Suppr超能文献

脑成像预测指标与抑郁症优化治疗预测国际研究:一项随机对照试验的研究方案

Brain imaging predictors and the international study to predict optimized treatment for depression: study protocol for a randomized controlled trial.

作者信息

Grieve Stuart M, Korgaonkar Mayuresh S, Etkin Amit, Harris Anthony, Koslow Stephen H, Wisniewski Stephen, Schatzberg Alan F, Nemeroff Charles B, Gordon Evian, Williams Leanne M

出版信息

Trials. 2013 Jul 18;14:224. doi: 10.1186/1745-6215-14-224.

Abstract

BACKGROUND

Approximately 50% of patients with major depressive disorder (MDD) do not respond optimally to antidepressant treatments. Given this is a large proportion of the patient population, pretreatment tests that predict which patients will respond to which types of treatment could save time, money and patient burden. Brain imaging offers a means to identify treatment predictors that are grounded in the neurobiology of the treatment and the pathophysiology of MDD.

METHODS/DESIGN: The international Study to Predict Optimized Treatment in Depression is a multi-center, parallel model, randomized clinical trial with an embedded imaging sub-study to identify such predictors. We focus on brain circuits implicated in major depressive disorder and its treatment. In the full trial, depressed participants are randomized to receive escitalopram, sertraline or venlafaxine-XR (open-label). They are assessed using standardized multiple clinical, cognitive-emotional behavioral, electroencephalographic and genetic measures at baseline and at eight weeks post-treatment. Overall, 2,016 depressed participants (18 to 65 years old) will enter the study, of whom a target of 10% will be recruited into the brain imaging sub-study (approximately 67 participants in each treatment arm) and 67 controls. The imaging sub-study is conducted at the University of Sydney and at Stanford University. Structural studies include high-resolution three-dimensional T1-weighted, diffusion tensor and T2/Proton Density scans. Functional studies include standardized functional magnetic resonance imaging (MRI) with three cognitive tasks (auditory oddball, a continuous performance task, and Go-NoGo) and two emotion tasks (unmasked conscious and masked non-conscious emotion processing tasks). After eight weeks of treatment, the functional MRI is repeated with the above tasks. We will establish the methods in the first 30 patients. Then we will identify predictors in the first half (n=102), test the findings in the second half, and then extend the analyses to the total sample.

TRIAL REGISTRATION

International Study to Predict Optimized Treatment--in Depression (iSPOT-D). ClinicalTrials.gov, NCT00693849.

摘要

背景

约50%的重度抑郁症(MDD)患者对抗抑郁治疗反应不佳。鉴于这在患者群体中占比很大,能够预测哪些患者对哪种治疗类型有反应的治疗前测试可以节省时间、金钱并减轻患者负担。脑成像提供了一种手段,可识别基于治疗的神经生物学和MDD病理生理学的治疗预测指标。

方法/设计:抑郁症优化治疗预测国际研究是一项多中心、平行模型、随机临床试验,其中包含一个嵌入式成像子研究以识别此类预测指标。我们关注与重度抑郁症及其治疗相关的脑回路。在整个试验中,抑郁参与者被随机分配接受艾司西酞普兰、舍曲林或文拉法辛缓释片(开放标签)。在基线和治疗后八周,使用标准化的多种临床、认知-情感行为、脑电图和基因测量方法对他们进行评估。总体而言,2016名抑郁参与者(18至65岁)将进入该研究,其中目标是将10%的参与者纳入脑成像子研究(每个治疗组约67名参与者)以及67名对照组。成像子研究在悉尼大学和斯坦福大学进行。结构研究包括高分辨率三维T1加权、扩散张量和T2/质子密度扫描。功能研究包括标准化功能磁共振成像(MRI)以及三项认知任务(听觉Oddball任务、持续操作任务和Go-NoGo任务)和两项情感任务(无遮蔽有意识和遮蔽无意识情感处理任务)。治疗八周后,使用上述任务重复进行功能MRI检查。我们将在前30名患者中建立方法。然后我们将在上半年(n = 102)中识别预测指标,在下半年测试结果,然后将分析扩展至整个样本。

试验注册

抑郁症优化治疗预测国际研究(iSPOT-D)。ClinicalTrials.gov,NCT00693849。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf86/3729660/4df6a9b6f5a6/1745-6215-14-224-1.jpg

相似文献

3
Prediction of nonremission to antidepressant therapy using diffusion tensor imaging.
J Clin Psychiatry. 2016 Apr;77(4):e436-43. doi: 10.4088/JCP.14m09577.
6
Utility of event-related potentials in predicting antidepressant treatment response: An iSPOT-D report.
Eur Neuropsychopharmacol. 2015 Nov;25(11):1981-90. doi: 10.1016/j.euroneuro.2015.07.022. Epub 2015 Aug 6.
7
A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial.
Neuropsychopharmacology. 2015 May;40(6):1332-42. doi: 10.1038/npp.2014.333. Epub 2014 Dec 30.
8
Frontoparietal Activation During Response Inhibition Predicts Remission to Antidepressants in Patients With Major Depression.
Biol Psychiatry. 2016 Feb 15;79(4):274-81. doi: 10.1016/j.biopsych.2015.02.037. Epub 2015 Mar 27.
9
Effect of antidepressant treatment on cognitive impairments associated with depression: a randomised longitudinal study.
Lancet Psychiatry. 2016 May;3(5):425-35. doi: 10.1016/S2215-0366(16)00012-2. Epub 2016 Mar 16.
10
Magnetic Resonance Imaging Measures of Brain Structure to Predict Antidepressant Treatment Outcome in Major Depressive Disorder.
EBioMedicine. 2014 Dec 3;2(1):37-45. doi: 10.1016/j.ebiom.2014.12.002. eCollection 2015 Jan.

引用本文的文献

1
Cognitive control circuit function predicts antidepressant outcomes: A signal detection approach to actionable clinical decisions.
Pers Med Psychiatry. 2024 Jul-Aug;45-46. doi: 10.1016/j.pmip.2024.100126. Epub 2024 Apr 30.
3
Neuroimaging for precision medicine in psychiatry.
Neuropsychopharmacology. 2024 Nov;50(1):246-257. doi: 10.1038/s41386-024-01917-z. Epub 2024 Jul 22.
6
Mapping Neural Circuit Biotypes to Symptoms and Behavioral Dimensions of Depression and Anxiety.
Biol Psychiatry. 2022 Mar 15;91(6):561-571. doi: 10.1016/j.biopsych.2021.06.024. Epub 2021 Jul 11.
8
Structural core of the executive control network: A high angular resolution diffusion MRI study.
Hum Brain Mapp. 2020 Apr 1;41(5):1226-1236. doi: 10.1002/hbm.24870. Epub 2019 Nov 25.
9
Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder.
Mol Psychiatry. 2020 Jul;25(7):1537-1549. doi: 10.1038/s41380-019-0574-2. Epub 2019 Nov 6.

本文引用的文献

3
Corticolimbic brain reactivity to social signals of threat before and after sertraline treatment in generalized social phobia.
Biol Psychiatry. 2013 Feb 15;73(4):329-36. doi: 10.1016/j.biopsych.2012.10.003. Epub 2012 Nov 17.
4
The extended functional neuroanatomy of emotional processing biases for masked faces in major depressive disorder.
PLoS One. 2012;7(10):e46439. doi: 10.1371/journal.pone.0046439. Epub 2012 Oct 8.
5
Inhibition of hippocampal excitability by citalopram.
Epilepsia. 2012 Nov;53(11):2034-42. doi: 10.1111/j.1528-1167.2012.03660.x. Epub 2012 Sep 4.
8
Altered small-world brain networks in schizophrenia patients during working memory performance.
PLoS One. 2012;7(6):e38195. doi: 10.1371/journal.pone.0038195. Epub 2012 Jun 6.
10
Disrupted small-world brain networks in moderate Alzheimer's disease: a resting-state FMRI study.
PLoS One. 2012;7(3):e33540. doi: 10.1371/journal.pone.0033540. Epub 2012 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验