Suppr超能文献

通过将 EEG 和 MEG 与 MRI 皮质表面重建相结合来提高皮质活动的本地化:一种线性方法。

Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach.

机构信息

University of California, San Diego.

出版信息

J Cogn Neurosci. 1993 Spring;5(2):162-76. doi: 10.1162/jocn.1993.5.2.162.

Abstract

Abstract We describe a comprehensive linear approach to the problem of imaging brain activity with high temporal as well as spatial resolution based on combining EEG and MEG data with anatomical constraints derived from MRI images. The "inverse problem" of estimating the distribution of dipole strengths over the cortical surface is highly underdetermined, even given closely spaced EEG and MEG recordings. We have obtained much better solutions to this problem by explicitly incorporating both local cortical orientation as well as spatial covariance of sources and sensors into our formulation. An explicit polygonal model of the cortical manifold is first constructed as follows: (1) slice data in three orthogonal planes of section (needle-shaped voxels) are combined with a linear deblurring technique to make a single high-resolution 3-D image (cubic voxels), (2) the image is recursively flood-filled to determine the topology of the gray-white matter border, and (3) the resulting continuous surface is refined by relaxing it against the original 3-D gray-scale image using a deformable template method, which is also used to computationally flatten the cortex for easier viewing. The explicit solution to an error minimization formulation of an optimal inverse linear operator (for a particular cortical manifold, sensor placement, noise and prior source covariance) gives rise to a compact expression that is practically computable for hundreds of sensors and thousands of sources. The inverse solution can then be weighted for a particular (averaged) event using the sensor covariance for that event. Model studies suggest that we may be able to localize multiple cortical sources with spatial resolution as good as PET with this technique, while retaining a much finer grained picture of activity over time.

摘要

摘要 我们描述了一种基于 EEG 和 MEG 数据与来自 MRI 图像的解剖约束相结合,以实现高时间和空间分辨率的大脑活动成像的综合线性方法。即使使用紧密间隔的 EEG 和 MEG 记录,估计皮质表面上偶极子强度分布的“反问题”也是高度欠定的。通过明确将局部皮质方向以及源和传感器的空间协方差纳入我们的公式,我们已经获得了这个问题的更好解决方案。首先按照以下步骤构建皮质流形的显式多边形模型:(1)在三个正交的切片平面(针状体素)上组合切片数据,并使用线性去模糊技术制作单个高分辨率的 3-D 图像(立方体体素),(2)递归地填充图像以确定灰-白质边界的拓扑结构,以及(3)使用可变形模板方法使得到的连续表面松弛以抵抗原始 3-D 灰度图像,该方法还用于对皮质进行计算性地展平,以便于查看。特定皮质流形、传感器放置、噪声和先验源协方差的最优逆线性算子的误差最小化公式的显式解导致一个紧凑的表达式,对于数百个传感器和数千个源来说是可计算的。然后,可以使用该事件的传感器协方差对特定(平均)事件的逆解进行加权。模型研究表明,我们可能能够使用该技术以与 PET 相当的空间分辨率定位多个皮质源,同时保留随时间变化的活动的更精细粒度的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验