Institut für Botanik, Heinrich-Heine Universität HHU, Universitätsstr. 1, 40225, Düsseldorf, Germany.
Orig Life Evol Biosph. 2013 Jun;43(3):283-303. doi: 10.1007/s11084-013-9337-2. Epub 2013 Jul 20.
Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species-Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum-used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.
地衣是两种生物体的共生体,一种是真菌共生菌,另一种是光合自养光合菌。在自然界中,许多地衣能够耐受极端的环境条件,因此成为天体生物学研究中的有价值模型,以探究生物对非地球条件的抗性;包括太空暴露、超高速冲击模拟以及太空和火星参数模拟。所有研究都证明了所选极端耐受地衣对非地球非生物因素的高抗性。除了其他适应措施外,本研究还重点研究了五种地衣物种——Circinaria gyrosa、Rhizocarpon geographicum、Xanthoria elegans、Buellia frigida、Pleopsidium chlorophanum 的形态和解剖特征,这些物种用于当今的天体生物学研究。通过显微镜方法对叶状体组织进行详细研究,可以研究形态对地衣抗性的影响,并为解释近期和未来实验的数据提供基础。所有研究的地衣都显示出共同的异质叶状体结构,但具有不同的形态解剖特征,如内外叶体粘液基质、皮层、藻类排列和菌丝束。在 B. frigida、R. geographicum 和 X. elegans 中,色素化皮层、藻类排列和粘液的组合似乎增强了抗性,而在 C. gyrosa 中,皮层下和藻类聚集体以及 P. chlorophanum 中的色素化皮层和基叶体突起似乎是至关重要的。因此,不能对形态赋予的抗性进行概括。这些差异可能反映了趋异进化历史的不同,并通过使地衣适应普遍的非生物胁迫而具有优势。特殊的地衣形态表明它在地衣抵抗极端陆地条件方面具有显著的作用,并可能解释了在天体生物学研究中发现的地衣具有高抗性的原因。