Suppr超能文献

一元件和二元件 Hill 型模型预测行走和奔跑山羊的比目鱼肌力的准确性。

Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models.

机构信息

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.

出版信息

J Biomech. 2013 Sep 3;46(13):2288-95. doi: 10.1016/j.jbiomech.2013.06.001. Epub 2013 Jul 18.

Abstract

Hill-type models are commonly used to estimate muscle forces during human and animal movement-yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation-deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with "differential" activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r(2), was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r(2)=0.26-0.51), and all exhibited some errors (RMSE=9.63-32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks.

摘要

Hill 型模型常用于估计人类和动物运动中的肌肉力量,但在步行、跑步和其他任务中估计的力量的准确性在很大程度上仍然未知。此外,大多数 Hill 型模型假设只有一个收缩元件,尽管有证据表明,具有不同激活-失活动力学的更快和更慢的运动单位可能会被独立或集体兴奋。本研究评估了一种新型的双元素 Hill 型模型,该模型具有快速和慢速收缩元件的“差异”激活。使用从山羊的跟腱肌肉在运动实验中收集的综合数据集(包括肌电图强度、肌纤维长度和肌腱力的测量值)评估模型性能。新的双元素模型预测的肌肉力与使用传统的单元素模型估计的力以及使用肌腱扣式换能器在体内测量的力进行了比较。总体而言,双元素模型对体内比目鱼肌力的预测效果最佳。决定系数 r(2) 比单元素模型高 26.9%,均方根误差 RMSE 低 37.4%。所有模型都捕捉到了在步行、小跑和疾驰过程中测量到的肌肉力的显著特征(r(2)=0.26-0.51),并且所有模型都表现出一些误差(RMSE=9.63-32.2%的最大体内力)。这些比较提供了 Hill 型模型准确性的重要见解。结果还表明,在肌肉模型中纳入快速和慢速收缩元件可以提高对运动任务中时变的、整个肌肉力的估计。

相似文献

1
Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models.
J Biomech. 2013 Sep 3;46(13):2288-95. doi: 10.1016/j.jbiomech.2013.06.001. Epub 2013 Jul 18.
4
Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images.
J Exp Biol. 2017 May 1;220(Pt 9):1643-1653. doi: 10.1242/jeb.154807. Epub 2017 Feb 15.
6
Dynamic muscle force predictions from EMG: an artificial neural network approach.
J Electromyogr Kinesiol. 1999 Dec;9(6):391-400. doi: 10.1016/s1050-6411(99)00014-0.
8
Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running.
J Theor Biol. 2008 Jun 21;252(4):662-73. doi: 10.1016/j.jtbi.2008.01.018. Epub 2008 Jan 31.
10
A muscle's force depends on the recruitment patterns of its fibers.
Ann Biomed Eng. 2012 Aug;40(8):1708-20. doi: 10.1007/s10439-012-0531-6. Epub 2012 Feb 17.

引用本文的文献

2
What good is a measure of muscle length? The how and why of direct measurements of skeletal muscle motion.
J Biomech. 2023 Aug;157:111709. doi: 10.1016/j.jbiomech.2023.111709. Epub 2023 Jul 1.
3
Muscle preflex response to perturbations in locomotion: experiments and simulations with realistic boundary conditions.
Front Bioeng Biotechnol. 2023 Apr 27;11:1150170. doi: 10.3389/fbioe.2023.1150170. eCollection 2023.
4
Smart ECG Biosensor Design with an Improved ANN Performance Based on the Taguchi Optimizer.
Bioengineering (Basel). 2022 Sep 19;9(9):482. doi: 10.3390/bioengineering9090482.
5
The impact of intrinsic muscle properties on simulated reaching performance.
Comput Methods Biomech Biomed Engin. 2023 May;26(7):777-788. doi: 10.1080/10255842.2022.2089022. Epub 2022 Jun 30.
6
Hammerstein-Wiener Multimodel Approach for Fast and Efficient Muscle Force Estimation from EMG Signals.
Biosensors (Basel). 2022 Feb 13;12(2):117. doi: 10.3390/bios12020117.
7
Stability and manoeuvrability in animal movement: lessons from biology, modelling and robotics.
Proc Biol Sci. 2022 Jan 26;289(1967):20212492. doi: 10.1098/rspb.2021.2492. Epub 2022 Jan 19.
9
Modeling muscle function using experimentally determined subject-specific muscle properties.
J Biomech. 2021 Mar 5;117:110242. doi: 10.1016/j.jbiomech.2021.110242. Epub 2021 Jan 15.

本文引用的文献

2
A muscle's force depends on the recruitment patterns of its fibers.
Ann Biomed Eng. 2012 Aug;40(8):1708-20. doi: 10.1007/s10439-012-0531-6. Epub 2012 Feb 17.
3
Implicit methods for efficient musculoskeletal simulation and optimal control.
Procedia IUTAM. 2011 Jan 1;2(2011):297-316. doi: 10.1016/j.piutam.2011.04.027.
4
EMG analysis tuned for determining the timing and level of activation in different motor units.
J Electromyogr Kinesiol. 2011 Aug;21(4):557-65. doi: 10.1016/j.jelekin.2011.04.003. Epub 2011 May 12.
5
Motor unit recruitment for dynamic tasks: current understanding and future directions.
J Comp Physiol B. 2009 Jan;179(1):57-66. doi: 10.1007/s00360-008-0289-1. Epub 2008 Jul 3.
7
Patterns of motor recruitment can be determined using surface EMG.
J Electromyogr Kinesiol. 2009 Apr;19(2):199-207. doi: 10.1016/j.jelekin.2007.09.006. Epub 2007 Oct 29.
9
Muscle fibre recruitment can respond to the mechanics of the muscle contraction.
J R Soc Interface. 2006 Aug 22;3(9):533-44. doi: 10.1098/rsif.2006.0113.
10
Estimation of the interplay between groups of fast and slow muscle fibers of the tibialis anterior and gastrocnemius muscle while running.
J Electromyogr Kinesiol. 2006 Apr;16(2):188-97. doi: 10.1016/j.jelekin.2005.07.004. Epub 2005 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验