Suppr超能文献

案例研究:一种用于机器人脚踝假肢的仿生控制算法可实现平地行走和上楼梯的自适应控制。

Case Study: A Bio-Inspired Control Algorithm for a Robotic Foot-Ankle Prosthesis Provides Adaptive Control of Level Walking and Stair Ascent.

作者信息

Tahir Uzma, Hessel Anthony L, Lockwood Eric R, Tester John T, Han Zhixiu, Rivera Daniel J, Covey Kaitlyn L, Huck Thomas G, Rice Nicole A, Nishikawa Kiisa C

机构信息

Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States.

Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, United States.

出版信息

Front Robot AI. 2018 Apr 11;5:36. doi: 10.3389/frobt.2018.00036. eCollection 2018.

Abstract

Powered ankle-foot prostheses assist users through plantarflexion during stance and dorsiflexion during swing. Provision of motor power permits faster preferred walking speeds than passive devices, but use of active motor power raises the issue of control. While several commercially available algorithms provide torque control for many intended activities and variations of terrain, control approaches typically exhibit no inherent adaptation. In contrast, muscles adapt instantaneously to changes in load without sensory feedback due to the intrinsic property that their stiffness changes with length and velocity. We previously developed a "winding filament" hypothesis (WFH) for muscle contraction that accounts for intrinsic muscle properties by incorporating the giant titin protein. The goals of this study were to develop a WFH-based control algorithm for a powered prosthesis and to test its robustness during level walking and stair ascent in a case study of two subjects with 4-5 years of experience using a powered prosthesis. In the WFH algorithm, ankle moments produced by virtual muscles are calculated based on muscle length and activation. Net ankle moment determines the current applied to the motor. Using this algorithm implemented in a BiOM T2 prosthesis, we tested subjects during level walking and stair ascent. During level walking at variable speeds, the WFH algorithm produced plantarflexion angles (range = -8 to -19°) and ankle moments (range = 1 to 1.5 Nm/kg) similar to those produced by the BiOM T2 stock controller and to people with no amputation. During stair ascent, the WFH algorithm produced plantarflexion angles (range -15 to -19°) that were similar to persons with no amputation and were ~5 times larger on average at 80 steps/min than those produced by the stock controller. This case study provides proof-of-concept that, by emulating muscle properties, the WFH algorithm provides robust, adaptive control of level walking at variable speed and stair ascent with minimal sensing and no change in parameters.

摘要

动力踝足假肢在站立期通过跖屈以及摆动期通过背屈来辅助使用者。与被动装置相比,提供动力能使使用者达到更快的优选步行速度,但主动动力的使用引发了控制问题。虽然有几种商用算法可为许多预期活动和不同地形变化提供扭矩控制,但控制方法通常没有内在的适应性。相比之下,肌肉由于其刚度随长度和速度变化的固有特性,无需感觉反馈就能即时适应负荷变化。我们之前提出了一种用于肌肉收缩的“缠绕细丝”假说(WFH),该假说通过纳入巨大的肌联蛋白来解释肌肉的固有特性。本研究的目的是为动力假肢开发一种基于WFH的控制算法,并在两名有4至5年动力假肢使用经验的受试者的案例研究中,测试该算法在平地上行走和上楼梯过程中的鲁棒性。在WFH算法中,虚拟肌肉产生的踝关节力矩是根据肌肉长度和激活情况来计算的。净踝关节力矩决定施加到电机上的电流。使用在BiOM T2假肢中实现的该算法,我们对受试者在平地上行走和上楼梯过程中进行了测试。在不同速度的平地上行走时,WFH算法产生的跖屈角度(范围为-8至-19°)和踝关节力矩(范围为1至1.5 Nm/kg)与BiOM T2原装控制器产生的以及无截肢者的相似。在上楼梯过程中,WFH算法产生的跖屈角度(范围为-15至-19°)与无截肢者的相似,并且在每分钟80步时,平均比原装控制器产生的角度大5倍左右。该案例研究提供了概念验证,即通过模拟肌肉特性,WFH算法能以最少的传感和无需参数变化,对变速平地上行走和上楼梯提供鲁棒的、自适应的控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f81/7805871/c24c79b2c9e0/frobt-05-00036-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验