Suppr超能文献

使用实验确定的个体特异性肌肉属性来模拟肌肉功能。

Modeling muscle function using experimentally determined subject-specific muscle properties.

机构信息

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA, United States.

出版信息

J Biomech. 2021 Mar 5;117:110242. doi: 10.1016/j.jbiomech.2021.110242. Epub 2021 Jan 15.

Abstract

Muscle models are commonly based on intrinsic properties pooled across a number of individuals, often from a different species, and rarely validated against directly measured muscle forces. Here we use a rich data set of rat medial gastrocnemius muscle forces recorded during in-situ and in-vivo isometric, isotonic, and cyclic contractions to test the accuracy of forces predicted using Hill-type muscle models. We identified force-length and force-velocity parameters for each individual, and used either these subject-specific intrinsic properties, or population-averaged properties within the models. The modeled forces for cyclic in-vivo and in-situ contractions matched with measured muscle-tendon forces with r between 0.70 and 0.86, and root-mean square errors (RMSE) of 0.10 to 0.13 (values normalized to the maximum isometric force). The modeled forces were least accurate at the highest movement and cycle frequencies and did not show an improvement in r when subject-specific intrinsic properties were used; however, there was a reduction in the RMSE with fewer predictions having higher errors. We additionally recorded and tested muscle models specific to proximal and distal regions of the muscle and compared them to measures and models from the whole muscle belly: there was no improvement in model performance when using data from specific anatomical regions. These results show that Hill-type muscle models can yield very good performance for cyclic contractions typical of locomotion, with small reductions in errors when subject-specific intrinsic properties are used.

摘要

肌肉模型通常基于跨多个个体(通常来自不同物种)汇总的内在特性,并且很少针对直接测量的肌肉力进行验证。在这里,我们使用丰富的大鼠内侧比目鱼肌力数据集,这些数据是在原位和体内等长、等张和循环收缩过程中记录的,以测试使用 Hill 型肌肉模型预测力的准确性。我们确定了每个个体的力-长度和力-速度参数,并在模型中使用这些个体特定的内在特性或群体平均值。循环体内和原位收缩的模型力与测量的肌腱-肌肉力吻合,r 值在 0.70 到 0.86 之间,均方根误差(RMSE)为 0.10 到 0.13(值归一化到最大等长力)。在最高运动和循环频率下,模型力的准确性最低,并且当使用个体特定的内在特性时,r 值没有提高;然而,随着预测中更高错误的减少,RMSE 有所降低。我们还记录并测试了肌肉模型特定于肌肉的近端和远端区域,并将其与整个肌肉腹部的测量值和模型进行了比较:当使用特定解剖区域的数据时,模型性能没有提高。这些结果表明,Hill 型肌肉模型可以为典型的运动循环收缩提供非常好的性能,当使用个体特定的内在特性时,误差会略有降低。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验