Suppr超能文献

发育突触处的谷氨酸能受体:含 GluN3A 的 NMDA 受体和 GluA2 缺失的 AMPA 受体的作用。

Glutamatergic receptors at developing synapses: the role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors.

机构信息

Department of Basic Neuroscience, University of Geneva (Switzerland), 1 Rue Michel-Servet, 1211 Geneva (CH), Switzerland.

Department of Basic Neuroscience, University of Geneva (Switzerland), 1 Rue Michel-Servet, 1211 Geneva (CH), Switzerland.

出版信息

Eur J Pharmacol. 2013 Nov 5;719(1-3):107-111. doi: 10.1016/j.ejphar.2013.04.056. Epub 2013 Jul 17.

Abstract

During brain development excitatory synapses exhibit significant changes in their postsynaptic receptors and activated signaling pathways. Calcium represents the most crucial signaling factor in synaptic transmission and plasticity. Therefore developmental changes in calcium-permeable channels on the membrane contribute significantly to the modulation of neurotransmission at excitatory synapses. The present review focuses on two types of "non-canonical" glutamate receptors in terms of calcium permeability: GluN3A-containing NMDA receptors (calcium-impermeable) and GluA2-lacking AMPA receptors (calcium permeable). The involvement of these receptors during development and their potential function in synaptic plasticity are discussed. The synaptic incorporation of these receptors would alter calcium permeability, and therefore the threshold/direction of further plastic changes. We believe that characterizing the dynamics of non-canonical glutamate receptors during development could provide insight into how these receptors are recruited or removed in pathological conditions.

摘要

在大脑发育过程中,兴奋性突触后受体和激活的信号通路会发生显著变化。钙是突触传递和可塑性中最重要的信号因子。因此,细胞膜上钙通透性通道的发育变化对兴奋性突触传递的调节有重要贡献。本综述主要关注两种类型的“非经典”谷氨酸受体的钙通透性:含有 GluN3A 的 NMDA 受体(钙不通透)和缺乏 GluA2 的 AMPA 受体(钙通透)。讨论了这些受体在发育过程中的作用及其在突触可塑性中的潜在功能。这些受体的突触整合会改变钙通透性,从而改变进一步的可塑性变化的阈值/方向。我们相信,描述发育过程中非经典谷氨酸受体的动力学特征可以深入了解这些受体在病理条件下是如何被募集或去除的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验