Dipartimento di Scienze Cliniche e Biologiche, Facoltà di Medicina e Chirurgia S. Luigi Gonzaga, Università di Torino, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
Basic Res Cardiol. 2013 Sep;108(5):371. doi: 10.1007/s00395-013-0371-z. Epub 2013 Jul 20.
Postconditioning (PostC) can be obtained either with brief cycles of ischemia/reperfusion (I-PostC) or with a direct targeting of mitochondria with Diazoxide (pharmacological PostC, P-PostC). I-PostC may induce the activation of RISK and SAFE pathways and may favor nitric oxide production with S-Nitrosylation of proteins and redox signaling. It is not clear whether Diazoxide can lead to similar effects. We compared the effects of I-PostC and P-PostC on (a) kinases of RISK- and SAFE pathway, (b) S-Nitrosylation of mitochondrial proteins and (c) reduction of death signals (PKCδ, cleaved caspase-3 and Beclin-1) in cytosolic and mitochondrial fractions. Isolated rat hearts underwent (1) perfusion without ischemia (Sham), (2) ischemia/reperfusion (30-min ischemia plus 2-h reperfusion), (3) I-PostC (5 intermittent cycles of 10-s reperfusion and 10-s ischemia immediately after the 30-min ischemia), (4) P-PostC (Diazoxide 30 μM in the first of 3-min of reperfusion) or (5) I-PostC + MPG or P-PostC + MPG (MPG, 2-mercaptopropionylglycine 300 μM). Using Western blot and biotin switch assay, we found that P-PostC induced a redox sensible phosphorylation/translocation of Akt, ERK1/2 and GSK3β into the mitochondria, but not of phospho-STAT3, which was translocated into the mitochondria by I-PostC only. Either I-PostC or P-PostC increased mitochondrial S-Nitrosylated proteins (e.g., VDAC) and reduced the levels of phospho-PKCδ, cleaved caspase-3 and Beclin-1. Therefore, direct targeting of mitochondria with Diazoxide (a) activates the RISK pathway via a redox signaling, (b) favors discrete mitochondrial protein S-Nitrosylation, including VDAC and (c) decreases signals of death. Intriguingly, phospho-STAT3 translocation is induced by I-PostC, but not by P-PostC, thus suggesting a redox-independent mechanism in the SAFE pathway.
预处理(PostC)可以通过短暂的缺血/再灌注循环(I-PostC)或使用二氮嗪(药理学预处理,P-PostC)直接靶向线粒体来获得。I-PostC 可能会激活 RISK 和 SAFE 途径,并通过蛋白质的 S-亚硝基化和氧化还原信号促进一氧化氮的产生。目前尚不清楚二氮嗪是否会产生类似的效果。我们比较了 I-PostC 和 P-PostC 对(a)RISK 和 SAFE 途径的激酶,(b)线粒体蛋白的 S-亚硝基化和(c)胞质和线粒体部分的死亡信号(PKCδ、裂解的 caspase-3 和 Beclin-1)的影响。分离的大鼠心脏经历了(1)无缺血灌注(Sham),(2)缺血/再灌注(30 分钟缺血加 2 小时再灌注),(3)I-PostC(30 分钟缺血后立即进行 5 个 10 秒再灌注和 10 秒缺血的间歇性循环),(4)P-PostC(再灌注的第 3 分钟内使用 30 μM 二氮嗪)或(5)I-PostC+MPG 或 P-PostC+MPG(MPG,300 μM 2-巯基丙酰基甘氨酸)。通过 Western blot 和生物素转移测定,我们发现 P-PostC 诱导 Akt、ERK1/2 和 GSK3β的氧化还原敏感磷酸化/易位进入线粒体,但不是磷酸化 STAT3,磷酸化 STAT3 仅由 I-PostC 易位进入线粒体。I-PostC 或 P-PostC 均可增加线粒体 S-亚硝基化蛋白(如 VDAC)并降低磷酸化 PKCδ、裂解的 caspase-3 和 Beclin-1 的水平。因此,使用二氮嗪直接靶向线粒体(a)通过氧化还原信号激活 RISK 途径,(b)有利于离散的线粒体蛋白 S-亚硝基化,包括 VDAC,(c)降低死亡信号。有趣的是,磷酸化 STAT3 的易位是由 I-PostC 诱导的,而不是由 P-PostC 诱导的,这表明 SAFE 途径中存在一种不依赖于氧化还原的机制。