Suppr超能文献

外显子组测序分析:疾病变异检测指南。

Exome sequencing analysis: a guide to disease variant detection.

作者信息

Isakov Ofer, Perrone Marie, Shomron Noam

机构信息

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Methods Mol Biol. 2013;1038:137-58. doi: 10.1007/978-1-62703-514-9_8.

Abstract

Whole exome sequencing presents a powerful tool to study rare genetic disorders. The most challenging part of using exome sequencing for the purpose of disease-causing variant detection is analyzing, interpreting, and filtering the large number of detected variants. In this chapter we provide a comprehensive description of the various steps required for such an analysis. We address strategies in selecting samples to sequence, and technical considerations involved in exome sequencing. We then discuss how to identify variants, and methods for first annotating detected variants using characteristics such as allele frequency, location in the genome, and predicted severity, and then classifying and prioritizing the detected variants based on those annotations. Finally, we review possible gene annotations that may help to establish a relationship between genes carrying high-priority variants and the phenotype in question, in order to identify the most likely causative mutations.

摘要

全外显子组测序是研究罕见遗传病的有力工具。将外显子组测序用于致病变异检测时,最具挑战性的部分是分析、解读和筛选大量检测到的变异。在本章中,我们全面描述了此类分析所需的各个步骤。我们阐述了选择测序样本的策略以及外显子组测序涉及的技术考量。接着,我们讨论如何识别变异,以及首先利用等位基因频率、在基因组中的位置和预测的严重程度等特征对检测到的变异进行注释,然后基于这些注释对检测到的变异进行分类和排序的方法。最后,我们回顾可能有助于建立携带高优先级变异的基因与相关表型之间关系的基因注释,以便识别最可能的致病突变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验