Suppr超能文献

金黄色葡萄球菌青霉素结合蛋白2可利用源自耐万古霉素菌株的去甲脂肽聚糖前体脂质II进行细胞壁合成。

Staphylococcus aureus Penicillin-Binding Protein 2 Can Use Depsi-Lipid II Derived from Vancomycin-Resistant Strains for Cell Wall Synthesis.

作者信息

Nakamura Jun, Yamashiro Hidenori, Miya Hiroto, Nishiguchi Kenzo, Maki Hideki, Arimoto Hirokazu

机构信息

Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan), Fax: (+81) 0-22-217-6204.

出版信息

Chemistry. 2013 Sep 2;19(36):12104-12. doi: 10.1002/chem.201301074. Epub 2013 Jul 19.

Abstract

Vancomycin-resistant Staphylococcus aureus (S. aureus) (VRSA) uses depsipeptide-containing modified cell-wall precursors for the biosynthesis of peptidoglycan. Transglycosylase is responsible for the polymerization of the peptidoglycan, and the penicillin-binding protein 2 (PBP2) plays a major role in the polymerization among several transglycosylases of wild-type S. aureus. However, it is unclear whether VRSA processes the depsipeptide-containing peptidoglycan precursor by using PBP2. Here, we describe the total synthesis of depsi-lipid I, a cell-wall precursor of VRSA. By using this chemistry, we prepared a depsi-lipid II analogue as substrate for a cell-free transglycosylation system. The reconstituted system revealed that the PBP2 of S. aureus is able to process a depsi-lipid II intermediate as efficiently as its normal substrate. Moreover, the system was successfully used to demonstrate the difference in the mode of action of the two antibiotics moenomycin and vancomycin.

摘要

耐万古霉素金黄色葡萄球菌(VRSA)利用含缩肽的修饰细胞壁前体进行肽聚糖的生物合成。转糖基酶负责肽聚糖的聚合,而青霉素结合蛋白2(PBP2)在野生型金黄色葡萄球菌的几种转糖基酶中,在聚合过程中起主要作用。然而,目前尚不清楚VRSA是否通过使用PBP2来处理含缩肽的肽聚糖前体。在此,我们描述了VRSA的细胞壁前体缩肽脂质I的全合成。利用这种化学方法,我们制备了一种缩肽脂质II类似物作为无细胞转糖基化系统的底物。重组系统表明,金黄色葡萄球菌的PBP2能够像处理其正常底物一样有效地处理缩肽脂质II中间体。此外,该系统成功地用于证明两种抗生素莫能菌素和万古霉素作用方式的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee32/4235313/a1ea0e1c8142/chem0019-12104-f1.jpg

相似文献

3
Moenomycin-resistance is associated with vancomycin-intermediate susceptibility in Staphylococcus aureus.
Microbiol Immunol. 2003;47(12):927-35. doi: 10.1111/j.1348-0421.2003.tb03466.x.
4
Katanosin B and plusbacin A(3), inhibitors of peptidoglycan synthesis in methicillin-resistant Staphylococcus aureus.
Antimicrob Agents Chemother. 2001 Jun;45(6):1823-7. doi: 10.1128/AAC.45.6.1823-1827.2001.
6
Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.
Chem Biol Drug Des. 2016 Feb;87(2):190-9. doi: 10.1111/cbdd.12662. Epub 2015 Oct 9.
7
Differential inhibition of Staphylococcus aureus PBP2 by glycopeptide antibiotics.
J Am Chem Soc. 2005 Mar 16;127(10):3250-1. doi: 10.1021/ja043849e.
9
[Mechanism of vancomycin resistance in MRSA strain Mu50].
Jpn J Antibiot. 1998 Mar;51(3):237-47.
10
Methicillin-resistant septal peptidoglycan synthesis in a methicillin-resistant Staphylococcus aureus strain.
Antimicrob Agents Chemother. 1983 Apr;23(4):610-3. doi: 10.1128/AAC.23.4.610.

引用本文的文献

1
Versatile synthesis of pathogen specific bacterial cell wall building blocks.
RSC Adv. 2022 May 18;12(24):15046-15069. doi: 10.1039/d2ra01915a. eCollection 2022 May 17.

本文引用的文献

1
Synthesis and NMR characterization of (Z,Z,Z,Z,E,E,ω)-heptaprenol.
J Am Chem Soc. 2012 Aug 22;134(33):13881-8. doi: 10.1021/ja306184m. Epub 2012 Aug 10.
2
Redesign of glycopeptide antibiotics: back to the future.
ACS Chem Biol. 2012 May 18;7(5):797-804. doi: 10.1021/cb300007j. Epub 2012 Feb 21.
3
Total synthesis of polyprenyl N-glycolyl lipid II as a mycobacterial transglycosylase substrate.
Org Lett. 2011 Oct 7;13(19):5306-9. doi: 10.1021/ol2021687. Epub 2011 Sep 13.
4
Recent advances in the synthesis of new glycopeptide antibiotics.
Chem Soc Rev. 2012 Feb 7;41(3):957-78. doi: 10.1039/c1cs15125h. Epub 2011 Aug 10.
5
A new synthetic approach toward bacterial transglycosylase substrates, Lipid II and Lipid IV.
Org Lett. 2011 Sep 2;13(17):4600-3. doi: 10.1021/ol201806d. Epub 2011 Jul 28.
6
N-methylimidazolium chloride-catalyzed pyrophosphate formation: application to the synthesis of Lipid I and NDP-sugar donors.
Bioorg Med Chem Lett. 2011 Sep 1;21(17):5050-3. doi: 10.1016/j.bmcl.2011.04.061. Epub 2011 Apr 22.
7
Monofunctional transglycosylases are not essential for Staphylococcus aureus cell wall synthesis.
J Bacteriol. 2011 May;193(10):2549-56. doi: 10.1128/JB.01474-10. Epub 2011 Mar 25.
10
Mode of action of Van-M-02, a novel glycopeptide inhibitor of peptidoglycan synthesis, in vancomycin-resistant bacteria.
Antimicrob Agents Chemother. 2010 Feb;54(2):960-2. doi: 10.1128/AAC.00927-09. Epub 2009 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验