Suppr超能文献

细菌通过失能适应。

Bacterial adaptation through loss of function.

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA.

出版信息

PLoS Genet. 2013;9(7):e1003617. doi: 10.1371/journal.pgen.1003617. Epub 2013 Jul 11.

Abstract

The metabolic capabilities and regulatory networks of bacteria have been optimized by evolution in response to selective pressures present in each species' native ecological niche. In a new environment, however, the same bacteria may grow poorly due to regulatory constraints or biochemical deficiencies. Adaptation to such conditions can proceed through the acquisition of new cellular functionality due to gain of function mutations or via modulation of cellular networks. Using selection experiments on transposon-mutagenized libraries of bacteria, we illustrate that even under conditions of extreme nutrient limitation, substantial adaptation can be achieved solely through loss of function mutations, which rewire the metabolism of the cell without gain of enzymatic or sensory function. A systematic analysis of similar experiments under more than 100 conditions reveals that adaptive loss of function mutations exist for many environmental challenges. Drawing on a wealth of examples from published articles, we detail the range of mechanisms through which loss-of-function mutations can generate such beneficial regulatory changes, without the need for rare, specific mutations to fine-tune enzymatic activities or network connections. The high rate at which loss-of-function mutations occur suggests that null mutations play an underappreciated role in the early stages of adaption of bacterial populations to new environments.

摘要

细菌的代谢能力和调控网络已经通过进化进行了优化,以响应每种物种在其天然生态位中存在的选择压力。然而,在新环境中,相同的细菌可能由于调控限制或生化缺陷而生长不良。通过获得新的细胞功能(通过功能获得突变)或通过细胞网络的调节,适应这些条件可以进行。通过对转座子诱变的细菌文库进行选择实验,我们表明,即使在极端营养限制的条件下,仅通过功能丧失突变就可以实现大量的适应,这些突变重新布线了细胞的代谢,而没有获得酶或感觉功能。对 100 多种条件下的类似实验进行系统分析表明,对于许多环境挑战,都存在适应性的功能丧失突变。我们借鉴了大量已发表文章中的例子,详细说明了功能丧失突变产生这种有益的调控变化的一系列机制,而不需要罕见的、特定的突变来微调酶活性或网络连接。功能丧失突变的高发生率表明,在细菌种群适应新环境的早期阶段,无效突变发挥了被低估的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bdb/3708842/89b0434f1e60/pgen.1003617.g001.jpg

相似文献

1
Bacterial adaptation through loss of function.
PLoS Genet. 2013;9(7):e1003617. doi: 10.1371/journal.pgen.1003617. Epub 2013 Jul 11.
5
Molecular evolution: Adaptation by loss of function.
Nat Rev Genet. 2013 Sep;14(9):596. doi: 10.1038/nrg3557. Epub 2013 Jul 30.
6
A quantum-theoretical approach to the phenomenon of directed mutations in bacteria (hypothesis).
Biosystems. 1997;43(2):83-95. doi: 10.1016/s0303-2647(97)00030-0.
7
High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations.
PLoS Genet. 2016 Oct 11;12(10):e1006339. doi: 10.1371/journal.pgen.1006339. eCollection 2016 Oct.
8
Bacterial Evolution in High-Osmolarity Environments.
mBio. 2020 Aug 4;11(4):e01191-20. doi: 10.1128/mBio.01191-20.

引用本文的文献

1
Giant transposons promote strain heterogeneity in a major fungal pathogen.
mBio. 2025 Jun 11;16(6):e0109225. doi: 10.1128/mbio.01092-25. Epub 2025 May 12.
2
Evolving a plant-beneficial bacterium in soil vs. nutrient-rich liquid culture has contrasting effects on in-soil fitness.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0208524. doi: 10.1128/aem.02085-24. Epub 2025 Mar 11.
3
Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial.
PLoS Genet. 2025 Mar 7;21(3):e1011610. doi: 10.1371/journal.pgen.1011610. eCollection 2025 Mar.
4
A Short-Term View of Protein Sequence Evolution from Salmonella.
Genome Biol Evol. 2025 Mar 6;17(3). doi: 10.1093/gbe/evaf040.
5
6
Convergent reductive evolution in bee-associated lactic acid bacteria.
Appl Environ Microbiol. 2024 Nov 20;90(11):e0125724. doi: 10.1128/aem.01257-24. Epub 2024 Oct 23.
7
Diverse and specialized metabolic capabilities of microbes in oligotrophic built environments.
Microbiome. 2024 Oct 17;12(1):198. doi: 10.1186/s40168-024-01926-6.
8
Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals.
iScience. 2024 Aug 31;27(10):110860. doi: 10.1016/j.isci.2024.110860. eCollection 2024 Oct 18.
9
Genomic and phenotypic imprints of microbial domestication on cheese starter cultures.
Nat Commun. 2024 Oct 5;15(1):8642. doi: 10.1038/s41467-024-52687-7.
10
Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae.
Genome Biol. 2024 Sep 30;25(1):250. doi: 10.1186/s13059-024-03393-6.

本文引用的文献

1
Parallel evolutionary dynamics of adaptive diversification in Escherichia coli.
PLoS Biol. 2013;11(2):e1001490. doi: 10.1371/journal.pbio.1001490. Epub 2013 Feb 19.
2
The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast.
Cell Rep. 2012 Nov 29;2(5):1399-410. doi: 10.1016/j.celrep.2012.09.017. Epub 2012 Oct 25.
3
Antivirulence genes: insights into pathogen evolution through gene loss.
Infect Immun. 2012 Dec;80(12):4061-70. doi: 10.1128/IAI.00740-12. Epub 2012 Oct 8.
4
Genomic analysis of a key innovation in an experimental Escherichia coli population.
Nature. 2012 Sep 27;489(7417):513-8. doi: 10.1038/nature11514. Epub 2012 Sep 19.
5
Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83. doi: 10.1073/pnas.1210309109. Epub 2012 Sep 18.
6
Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model.
Res Microbiol. 2012 Jul;163(6-7):399-406. doi: 10.1016/j.resmic.2012.07.004. Epub 2012 Jul 20.
7
Fitness landscape transformation through a single amino acid change in the rho terminator.
PLoS Genet. 2012 May;8(5):e1002744. doi: 10.1371/journal.pgen.1002744. Epub 2012 May 31.
8
Growing unculturable bacteria.
J Bacteriol. 2012 Aug;194(16):4151-60. doi: 10.1128/JB.00345-12. Epub 2012 Jun 1.
9
Beyond homeostasis: a predictive-dynamic framework for understanding cellular behavior.
Annu Rev Cell Dev Biol. 2012;28:363-84. doi: 10.1146/annurev-cellbio-092910-154129. Epub 2012 May 3.
10
A new piece of the Shigella Pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected].
PLoS One. 2011;6(11):e27226. doi: 10.1371/journal.pone.0027226. Epub 2011 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验