Department of Integrative Structural Biology, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Université de Strasbourg (UdS), Illkirch, France.
PLoS One. 2013 Jul 9;8(7):e67810. doi: 10.1371/journal.pone.0067810. Print 2013.
PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ) in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al) that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs) compared to its mode of binding to ERRα and other nuclear receptors (NRs), where it interacts directly with the two ERRγ homodimer subunits.
METHODS/PRINCIPAL FINDINGS: Here, we show that PGC-1α receptor interacting domain (RID) binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR.
CONCLUSIONS/SIGNIFICANCE: These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.
PGC-1α 是细胞代谢和能量稳态的关键调节因子,它与雌激素相关受体(ERRα 和 ERRγ)一起在调节线粒体和代谢基因网络中发挥功能。ERR 的二聚化是与 PGC-1α 和其他共激活因子相互作用的先决条件,最终导致反式激活。最近(Devarakonda 等人)提出,PGC-1α 与 ERRγ 配体结合域(LBD)的结合方式与与 ERRα 和其他核受体(NRs)的结合方式明显不同,在与 ERRα 和其他核受体(NRs)的结合方式中,它直接与两个 ERRγ 同源二聚体亚基相互作用。
方法/主要发现:在这里,我们表明 PGC-1α 受体相互作用结构域(RID)以几乎相同的方式与 ERRα 和 ERRγ 同源二聚体结合。微量热泳动表明,PGC-1α RID 与 ERR LBD 之间的相互作用涉及单个受体亚基,通过高亲和力、ERR 特异性 L3 和低亲和力 L2 相互作用。NMR 研究进一步确定了 PGC-1α RID 与 ERR 相互作用的范围。这些发现与溶液结构一致,PGC-1α/ERRα LBDs 和 PGC-1α/ERRγ LBDs 复合物的溶液结构具有相同的结构,PGC-1α 以不对称的方式与同源二聚体 ERR 结合。
结论/意义:这些研究为 PGC-1α 与 ERR 之间相互作用的特异性提供了分子决定因素,其中共激活因子与这些受体的结合存在负协同作用。我们的工作表明,变构调节可能是控制共激活因子与同源二聚体结合的一般机制。