Suppr超能文献

肺癌预后的阴阳基因表达比特征。

Yin Yang gene expression ratio signature for lung cancer prognosis.

机构信息

Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada.

出版信息

PLoS One. 2013 Jul 17;8(7):e68742. doi: 10.1371/journal.pone.0068742. Print 2013.

Abstract

Many studies have established gene expression-based prognostic signatures for lung cancer. All of these signatures were built from training data sets by learning the correlation of gene expression with the patients' survival time. They require all new sample data to be normalized to the training data, ultimately resulting in common problems of low reproducibility and impracticality. To overcome these problems, we propose a new signature model which does not involve data training. We hypothesize that the imbalance of two opposing effects in lung cancer cells, represented by Yin and Yang genes, determines a patient's prognosis. We selected the Yin and Yang genes by comparing expression data from normal lung and lung cancer tissue samples using both unsupervised clustering and pathways analyses. We calculated the Yin and Yang gene expression mean ratio (YMR) as patient risk scores. Thirty-one Yin and thirty-two Yang genes were identified and selected for the signature development. In normal lung tissues, the YMR is less than 1.0; in lung cancer cases, the YMR is greater than 1.0. The YMR was tested for lung cancer prognosis prediction in four independent data sets and it significantly stratified patients into high- and low-risk survival groups (p = 0.02, HR = 2.72; p = 0.01, HR = 2.70; p = 0.007, HR = 2.73; p = 0.005, HR = 2.63). It also showed prediction of the chemotherapy outcomes for stage II & III. In multivariate analysis, the YMR risk factor was more successful at predicting clinical outcomes than other commonly used clinical factors, with the exception of tumor stage. The YMR can be measured in an individual patient in the clinic independent of gene expression platform. This study provided a novel insight into the biology of lung cancer and shed light on the clinical applicability.

摘要

许多研究已经建立了基于基因表达的肺癌预后标志物。所有这些标志物都是通过学习基因表达与患者生存时间之间的相关性,从训练数据集构建的。它们要求所有新的样本数据都要与训练数据进行标准化,最终导致了低重复性和不切实际的常见问题。为了克服这些问题,我们提出了一种新的签名模型,该模型不涉及数据训练。我们假设,肺癌细胞中两种相反效应的不平衡,由 Yin 和 Yang 基因表示,决定了患者的预后。我们通过使用无监督聚类和途径分析比较正常肺和肺癌组织样本的表达数据,选择 Yin 和 Yang 基因。我们计算了 Yin 和 Yang 基因表达的平均值比(YMR)作为患者风险评分。鉴定并选择了 31 个 Yin 和 32 个 Yang 基因用于签名的开发。在正常肺组织中,YMR 小于 1.0;在肺癌病例中,YMR 大于 1.0。在四个独立的数据集测试了 YMR 对肺癌预后的预测能力,它显著地将患者分为高风险和低风险生存组(p = 0.02,HR = 2.72;p = 0.01,HR = 2.70;p = 0.007,HR = 2.73;p = 0.005,HR = 2.63)。它还预测了 II 期和 III 期的化疗结果。在多变量分析中,YMR 风险因素比其他常用的临床因素更能成功预测临床结局,除了肿瘤分期。YMR 可以在临床中独立于基因表达平台在个体患者中进行测量。这项研究为肺癌的生物学提供了新的见解,并为临床应用提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28c3/3714286/72fae582bcc8/pone.0068742.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验