Integrative and Systems Biology Group, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC-UPV), Valencia, SPAIN.
BMC Evol Biol. 2013 Jul 22;13:156. doi: 10.1186/1471-2148-13-156.
GroESL is a heat-shock protein ubiquitous in bacteria and eukaryotic organelles. This evolutionarily conserved protein is involved in the folding of a wide variety of other proteins in the cytosol, being essential to the cell. The folding activity proceeds through strong conformational changes mediated by the co-chaperonin GroES and ATP. Functions alternative to folding have been previously described for GroEL in different bacterial groups, supporting enormous functional and structural plasticity for this molecule and the existence of a hidden combinatorial code in the protein sequence enabling such functions. Describing this plasticity can shed light on the functional diversity of GroEL. We hypothesize that different overlapping sets of amino acids coevolve within GroEL, GroES and between both these proteins. Shifts in these coevolutionary relationships may inevitably lead to evolution of alternative functions.
We conducted the first coevolution analyses in an extensive bacterial phylogeny, revealing complex networks of evolutionary dependencies between residues in GroESL. These networks differed among bacterial groups and involved amino acid sites with functional importance and others with previously unsuspected functional potential. Coevolutionary networks formed statistically independent units among bacterial groups and map to structurally continuous regions in the protein, suggesting their functional link. Sites involved in coevolution fell within narrow structural regions, supporting dynamic combinatorial functional links involving similar protein domains. Moreover, coevolving sites within a bacterial group mapped to regions previously identified as involved in folding-unrelated functions, and thus, coevolution may mediate alternative functions.
Our results highlight the evolutionary plasticity of GroEL across the entire bacterial phylogeny. Evidence on the functional importance of coevolving sites illuminates the as yet unappreciated functional diversity of proteins.
GroESL 是一种普遍存在于细菌和真核细胞器中的热休克蛋白。这种在进化上保守的蛋白质参与了细胞质中各种其他蛋白质的折叠,对细胞是必不可少的。折叠活性通过共伴侣蛋白 GroES 和 ATP 介导的强构象变化进行。以前已经在不同的细菌群中描述了 GroEL 的替代折叠功能,这支持了该分子巨大的功能和结构可塑性,以及蛋白质序列中存在隐藏的组合密码,从而实现了这些功能。描述这种可塑性可以揭示 GroEL 的功能多样性。我们假设 GroEL、GroES 内以及这两种蛋白质之间的不同重叠的氨基酸集共同进化。这些共进化关系的变化可能不可避免地导致替代功能的进化。
我们在广泛的细菌系统发育中进行了第一次共进化分析,揭示了 GroESL 中残基之间复杂的进化依赖性网络。这些网络在细菌群之间存在差异,涉及具有功能重要性的氨基酸位点和其他具有先前未被怀疑的功能潜力的氨基酸位点。共进化网络在细菌群之间形成了统计上独立的单元,并映射到蛋白质中结构连续的区域,表明它们具有功能联系。参与共进化的位点位于狭窄的结构区域内,支持涉及相似蛋白质结构域的动态组合功能联系。此外,一个细菌群内的共进化位点映射到先前被鉴定为与折叠无关的功能相关的区域,因此,共进化可能介导替代功能。
我们的研究结果突出了 GroEL 在整个细菌系统发育中的进化可塑性。共进化位点的功能重要性证据揭示了蛋白质尚未被认识到的功能多样性。