Suppr超能文献

体内必需伴侣蛋白依赖底物的系统调查。

A systematic survey of in vivo obligate chaperonin-dependent substrates.

机构信息

Department of Medical Genome Sciences, University of Tokyo, FSB401, Kashiwa, Chiba, Japan.

出版信息

EMBO J. 2010 May 5;29(9):1552-64. doi: 10.1038/emboj.2010.52. Epub 2010 Apr 1.

Abstract

Chaperonins are absolutely required for the folding of a subset of proteins in the cell. An earlier proteome-wide analysis of Escherichia coli chaperonin GroEL/GroES (GroE) interactors predicted obligate chaperonin substrates, which were termed Class III substrates. However, the requirement of chaperonins for in vivo folding has not been fully examined. Here, we comprehensively assessed the chaperonin requirement using a conditional GroE expression strain, and concluded that only approximately 60% of Class III substrates are bona fide obligate GroE substrates in vivo. The in vivo obligate substrates, combined with the newly identified obligate substrates, were termed Class IV substrates. Class IV substrates are restricted to proteins with molecular weights that could be encapsulated in the chaperonin cavity, are enriched in alanine/glycine residues, and have a strong structural preference for aggregation-prone folds. Notably, approximately 70% of the Class IV substrates appear to be metabolic enzymes, supporting a hypothetical role of GroE in enzyme evolution.

摘要

伴侣蛋白对于细胞内一部分蛋白质的折叠是绝对必需的。先前对大肠杆菌伴侣蛋白 GroEL/GroES(GroE)相互作用蛋白的蛋白质组全范围分析预测了必需伴侣蛋白底物,这些底物被称为第三类底物。然而,伴侣蛋白对于体内折叠的需求尚未得到充分研究。在这里,我们使用条件性 GroE 表达菌株全面评估了伴侣蛋白的需求,并得出结论,只有大约 60%的第三类底物是体内真正的必需 GroE 底物。这些体内必需底物,加上新鉴定的必需底物,被称为第四类底物。第四类底物仅限于可以被伴侣蛋白腔包裹的分子量的蛋白质,富含丙氨酸/甘氨酸残基,并且对易于聚集的折叠具有强烈的结构偏好。值得注意的是,大约 70%的第四类底物似乎是代谢酶,支持 GroE 在酶进化中的假设作用。

相似文献

1
A systematic survey of in vivo obligate chaperonin-dependent substrates.
EMBO J. 2010 May 5;29(9):1552-64. doi: 10.1038/emboj.2010.52. Epub 2010 Apr 1.
2
Conversion of a chaperonin GroEL-independent protein into an obligate substrate.
J Biol Chem. 2014 Nov 14;289(46):32073-32080. doi: 10.1074/jbc.M114.610444. Epub 2014 Oct 6.
3
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
Cell. 2005 Jul 29;122(2):209-20. doi: 10.1016/j.cell.2005.05.028.
4
What distinguishes GroEL substrates from other Escherichia coli proteins?
FEBS J. 2012 Feb;279(4):543-50. doi: 10.1111/j.1742-4658.2011.08458.x. Epub 2012 Jan 4.
6
Prediction of chaperonin GroE substrates using small structural patterns of proteins.
FEBS Open Bio. 2023 Apr;13(4):779-794. doi: 10.1002/2211-5463.13590. Epub 2023 Mar 14.
7
Identification of novel in vivo obligate GroEL/ES substrates based on data from a cell-free proteomics approach.
FEBS Lett. 2016 Jan;590(2):251-7. doi: 10.1002/1873-3468.12036. Epub 2016 Jan 5.
8
Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE.
J Bacteriol. 2007 Aug;189(16):5860-6. doi: 10.1128/JB.00493-07. Epub 2007 Jun 8.
9
Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL.
J Biol Chem. 2017 Dec 15;292(50):20583-20591. doi: 10.1074/jbc.M117.808576. Epub 2017 Oct 24.

引用本文的文献

3
Targeted protein degradation in Escherichia coli using CLIPPERs.
EMBO Rep. 2025 Jun 25. doi: 10.1038/s44319-025-00510-9.
4
G-quadruplexes catalyze protein folding by reshaping the energetic landscape.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2414045122. doi: 10.1073/pnas.2414045122. Epub 2025 Feb 6.
5
Response and adaptation of the transcriptional heat shock response to pressure.
Front Microbiol. 2024 Nov 18;15:1470617. doi: 10.3389/fmicb.2024.1470617. eCollection 2024.
6
Visualizing chaperonin function in situ by cryo-electron tomography.
Nature. 2024 Sep;633(8029):459-464. doi: 10.1038/s41586-024-07843-w. Epub 2024 Aug 21.
8
Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease.
ACS Chem Biol. 2024 Apr 19;19(4):809-823. doi: 10.1021/acschembio.3c00695. Epub 2024 Mar 13.
10
Mechanisms and pathology of protein misfolding and aggregation.
Nat Rev Mol Cell Biol. 2023 Dec;24(12):912-933. doi: 10.1038/s41580-023-00647-2. Epub 2023 Sep 8.

本文引用的文献

1
Reconciling theories of chaperonin accelerated folding with experimental evidence.
Cell Mol Life Sci. 2010 Jan;67(2):255-76. doi: 10.1007/s00018-009-0164-6. Epub 2009 Oct 23.
2
Converging concepts of protein folding in vitro and in vivo.
Nat Struct Mol Biol. 2009 Jun;16(6):574-81. doi: 10.1038/nsmb.1591.
3
Protein folding in Escherichia coli: the chaperonin GroE and its substrates.
Res Microbiol. 2009 May;160(4):267-77. doi: 10.1016/j.resmic.2009.04.002. Epub 2009 Apr 23.
4
Chemical cleavage-assisted tryptic digestion for membrane proteome analysis.
J Proteome Res. 2009 Jun;8(6):3169-75. doi: 10.1021/pr900074n.
5
Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins.
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4201-6. doi: 10.1073/pnas.0811922106. Epub 2009 Feb 27.
6
Do viral proteins possess unique biophysical features?
Trends Biochem Sci. 2009 Feb;34(2):53-9. doi: 10.1016/j.tibs.2008.10.009. Epub 2008 Dec 4.
7
Essential role of the chaperonin folding compartment in vivo.
EMBO J. 2008 May 21;27(10):1458-68. doi: 10.1038/emboj.2008.77. Epub 2008 Apr 17.
8
Protein abundance profiling of the Escherichia coli cytosol.
BMC Genomics. 2008 Feb 27;9:102. doi: 10.1186/1471-2164-9-102.
9
Low folding propensity and high translation efficiency distinguish in vivo substrates of GroEL from other Escherichia coli proteins.
Bioinformatics. 2007 Dec 15;23(24):3276-9. doi: 10.1093/bioinformatics/btm513. Epub 2007 Nov 15.
10
Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE.
J Bacteriol. 2007 Aug;189(16):5860-6. doi: 10.1128/JB.00493-07. Epub 2007 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验