Maltseva Diana V, Khaustova Nadezda A, Fedotov Nikita N, Matveeva Elona O, Lebedev Alexey E, Shkurnikov Maxim U, Galatenko Vladimir V, Schumacher Udo, Tonevitsky Alexander G
SRC Bioclinicum, Moscow, Russia.
J Clin Bioinforma. 2013 Jul 22;3(1):13. doi: 10.1186/2043-9113-3-13.
Quantification and normalization of RT-qPCR data critically depends on the expression of so called reference genes. Our goal was to develop a strategy for the selection of reference genes that utilizes microarray data analysis and combines known approaches for gene stability evaluation and to select a set of appropriate reference genes for research and clinical analysis of breast samples with different receptor and cancer status using this strategy.
A preliminary search of reference genes was based on high-throughput analysis of microarray datasets. The final selection and validation of the candidate genes were based on the RT-qPCR data analysis using several known methods for expression stability evaluation: comparative ∆Ct method, geNorm, NormFinder and Haller equivalence test.
A set of five reference genes was identified: ACTB, RPS23, HUWE1, EEF1A1 and SF3A1. The initial selection was based on the analysis of publically available well-annotated microarray datasets containing different breast cancers and normal breast epithelium from breast cancer patients and epithelium from cancer-free patients. The final selection and validation were performed using RT-qPCR data from 39 breast cancer biopsy samples. Three genes from the final set were identified by the means of microarray analysis and were novel in the context of breast cancer assay. We showed that the selected set of reference genes is more stable in comparison not only with individual genes, but also with a system of reference genes used in commercial OncotypeDX test.
A selection of reference genes for RT-qPCR can be efficiently performed by combining a preliminary search based on the high-throughput analysis of microarray datasets and final selection and validation based on the analysis of RT-qPCR data with a simultaneous examination of different expression stability measures. The identified set of reference genes proved to be less variable and thus potentially more efficient for research and clinical analysis of breast samples comparing to individual genes and the set of reference genes used in OncotypeDX assay.
逆转录定量聚合酶链反应(RT-qPCR)数据的定量和标准化严重依赖于所谓的内参基因的表达。我们的目标是开发一种利用微阵列数据分析并结合已知基因稳定性评估方法来选择内参基因的策略,并使用该策略为具有不同受体和癌症状态的乳腺样本的研究和临床分析选择一组合适的内参基因。
内参基因的初步筛选基于微阵列数据集的高通量分析。候选基因的最终选择和验证基于使用几种已知的表达稳定性评估方法的RT-qPCR数据分析:比较∆Ct法、geNorm、NormFinder和Haller等效性检验。
鉴定出一组五个内参基因:肌动蛋白β(ACTB)、核糖体蛋白S23(RPS23)、泛素羧基末端水解酶1(HUWE1)、真核翻译延伸因子1α1(EEF1A1)和剪接因子3a亚基1(SF3A1)。最初的筛选基于对公开可用的注释良好的微阵列数据集的分析,这些数据集包含来自乳腺癌患者的不同乳腺癌和正常乳腺上皮以及来自无癌患者的上皮。最终的选择和验证使用来自39个乳腺癌活检样本的RT-qPCR数据进行。最终集合中的三个基因通过微阵列分析确定,并且在乳腺癌检测方面是新的。我们表明,所选的内参基因集不仅与单个基因相比更稳定,而且与商业OncotypeDX检测中使用的内参基因系统相比也更稳定。
通过结合基于微阵列数据集高通量分析的初步筛选以及基于RT-qPCR数据分析并同时检查不同表达稳定性测量的最终选择和验证,可以有效地进行RT-qPCR内参基因的选择。与单个基因和OncotypeDX检测中使用的内参基因集相比,鉴定出的内参基因集被证明变异性较小,因此对于乳腺样本的研究和临床分析可能更有效。