Suppr超能文献

基于公共转录组数据库的选择和验证用于乳腺癌研究的可靠参考基因。

Public transcriptome database-based selection and validation of reliable reference genes for breast cancer research.

机构信息

Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China.

Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

出版信息

Biomed Eng Online. 2021 Dec 11;20(1):124. doi: 10.1186/s12938-021-00963-8.

Abstract

BACKGROUND

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes (RGs) is critical for normalizing and evaluating changes in the expression of target genes. However, uniform and reliable RGs for breast cancer research have not been identified, limiting the value of target gene expression studies. Here, we aimed to identify reliable and accurate RGs for breast cancer tissues and cell lines using the RNA-seq dataset.

METHODS

First, we compiled the transcriptome profiling data from the TCGA database involving 1217 samples to identify novel RGs. Next, ten genes with relatively stable expression levels were chosen as novel candidate RGs, together with six conventional RGs. To determine and validate the optimal RGs we performed qRT-PCR experiments on 87 samples from 11 types of surgically excised breast tumor specimens (n = 66) and seven breast cancer cell lines (n = 21). Five publicly available algorithms (geNorm, NormFinder, ΔCt method, BestKeeper, and ComprFinder) were used to assess the expression stability of each RG across all breast cancer tissues and cell lines.

RESULTS

Our results show that RG combinations SF1 + TRA2B + THRAP3 and THRAP3 + RHOA + QRICH1 showed stable expression in breast cancer tissues and cell lines, respectively, and that they displayed good interchangeability. We propose that these combinations are optimal triplet RGs for breast cancer research.

CONCLUSIONS

In summary, we identified novel and reliable RG combinations for breast cancer research based on a public RNA-seq dataset. Our results lay a solid foundation for the accurate normalization of qRT-PCR results across different breast cancer tissues and cells.

摘要

背景

实时荧光定量聚合酶链反应(qRT-PCR)是评估基因表达水平最敏感的技术。选择合适的内参基因(RGs)对于目标基因表达变化的归一化和评估至关重要。然而,尚未确定用于乳腺癌研究的统一且可靠的 RG,限制了目标基因表达研究的价值。在这里,我们旨在使用 RNA-seq 数据集鉴定乳腺癌组织和细胞系中可靠和准确的 RG。

方法

首先,我们编译了 TCGA 数据库中涉及 1217 个样本的转录组分析数据,以鉴定新的 RG。接下来,选择了十个表达水平相对稳定的基因作为新的候选 RG,并与六个常规 RG 一起。为了确定和验证最佳 RG,我们在 11 种手术切除的乳腺癌标本(n=66)和 7 种乳腺癌细胞系(n=21)的 87 个样本中进行了 qRT-PCR 实验。使用五种公开可用的算法(geNorm、NormFinder、ΔCt 方法、BestKeeper 和 ComprFinder)评估了每个 RG 在所有乳腺癌组织和细胞系中的表达稳定性。

结果

我们的结果表明,RG 组合 SF1+TRA2B+THRAP3 和 THRAP3+RHOA+QRICH1 分别在乳腺癌组织和细胞系中显示稳定表达,并且它们具有良好的互换性。我们提出这些组合是乳腺癌研究的最佳三重 RG。

结论

总之,我们基于公共 RNA-seq 数据集鉴定了用于乳腺癌研究的新的可靠 RG 组合。我们的结果为不同乳腺癌组织和细胞中 qRT-PCR 结果的准确归一化奠定了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/8665499/9cfedf2d5494/12938_2021_963_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验