Suppr超能文献

通过致密化提高连续毫米级碳纳米管纤维的拉伸性能。

Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification.

机构信息

Microsystems Technology Lab, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States.

出版信息

ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7198-207. doi: 10.1021/am401524q. Epub 2013 Aug 5.

Abstract

This work presents a study of the tensile mechanical properties of millimeter-long fibers comprising carbon nanotubes (CNTs). These CNT fibers are made of aligned, loosely packed parallel networks of CNTs that are grown in and harvested from CNT forests without drawing or spinning. Unlike typical CNT yarn, the present fibers contain a large fraction of CNTs that span the fibers' entire gauge length. The fibers are densified after growth and network formation to study how increasing the degree of interaction among CNTs in a network by various methods influences and limits the mechanical behavior of macroscopic CNT materials, particularly for the case in which the continuity of a large fraction of CNTs across the gauge length prevents failure purely by slip. Densification is carried out using various combinations of capillary-driven densification, mechanical pressure, and twisting. All methods of densification increase the fiber density and modify the nanoscale order of the CNTs. The highest strength and stiffness values (1.8 and 88.7 N tex(-1), respectively) are observed for capillary-densified fibers, whereas the highest toughness values (94 J g(-1)) and maximum reversible energy density (1.35 kJ kg(-1) or 677 kJ m(-3)) are observed for fibers densified by mechanical pressure. The results suggest that the path to higher performance CNT materials may lie not only in the use of continuous and long CNTs but also in controlling their density and nanoscale ordering through modification of the as-grown networks, such as by capillary-driven densification.

摘要

本文研究了由碳纳米管(CNT)组成的毫米长纤维的拉伸力学性能。这些 CNT 纤维由对齐的、松散堆积的平行 CNT 网络组成,这些网络是在 CNT 林中生长并从 CNT 林中收获的,而无需拉伸或纺丝。与典型的 CNT 纱线不同,目前的纤维包含大量跨越纤维整个测量长度的 CNT。在生长和网络形成后,纤维会被致密化,以研究通过各种方法增加网络中 CNT 之间相互作用的程度如何影响和限制宏观 CNT 材料的力学行为,特别是在大量 CNT 跨越测量长度的连续性阻止纯粹通过滑移导致失效的情况下。致密化是通过毛细管驱动致密化、机械压力和扭转的各种组合来进行的。所有致密化方法都增加了纤维密度并改变了 CNT 的纳米级有序性。毛细管致密化纤维表现出最高的强度和刚度值(分别为 1.8 和 88.7 N tex(-1)),而机械压力致密化纤维表现出最高的韧性值(94 J g(-1))和最大可逆能量密度(1.35 kJ kg(-1)或 677 kJ m(-3))。结果表明,提高 CNT 材料性能的途径不仅在于使用连续和长 CNT,还在于通过对生长网络进行改性(例如通过毛细管驱动致密化)来控制其密度和纳米级有序性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验