Mirzaeifar Reza, Qin Zhao, Buehler Markus J
Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA.
Nanoscale. 2015 Mar 12;7(12):5435-45. doi: 10.1039/c4nr06669c.
Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.
制造具有接近单个碳纳米管机械性能的连续宏观碳纳米管(CNT)纱线仍然是一项重大挑战。纺丝碳纳米管纤维和带材以增强纳米管之间的弱相互作用是制造高强度和坚韧连续纱线的一种简单而有效的方法。在这里,我们使用全原子和粗粒度分子动力学模拟研究了捻绞碳纳米管纱线的介观力学,考虑了多个长度尺度上的并发机制。为了研究这种复杂结构的力学响应而又不失去对分子机制的洞察,我们应用了一种多尺度策略。全原子结果用于训练粗粒度模型,以研究由多个碳纳米管组成的更大系统。基于全原子结果,介观模型参数作为捻角的函数进行更新,以便在更大尺度的模拟中纳入原子尺度的变形机制。通过跨越两个长度尺度,我们的模型能够准确预测捻绞纱线的力学行为,同时通过更新参数将单个纳米管中的原子水平变形整合到模型中。我们专注于研究一束紧密排列的纳米管的结果为碳纳米管的纺丝提供了新的机理见解。我们的模拟揭示了捻绞一束碳纳米管如何由于增加相互作用表面而在一定程度上改善纳米管之间的剪切相互作用。此外,捻绞束会由于束中单个碳纳米管横截面的过度变形而削弱管间相互作用。