Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada.
Infect Immun. 2013 Oct;81(10):3672-83. doi: 10.1128/IAI.00854-13. Epub 2013 Jul 22.
Salmonella enterica serovar Typhimurium is a model organism used to explore the virulence strategies underlying Salmonella pathogenesis. Although intestinal mucus is the first line of defense in the intestine, its role in protection against Salmonella is still unclear. The intestinal mucus layer is composed primarily of the Muc2 mucin, a heavily O-glycosylated glycoprotein. The core 3-derived O-glycans of Muc2 are synthesized by core 3 β1,3-N-acetylglucosaminyltransferase (C3GnT). Mice lacking these glycans still produce Muc2 but display a thinner intestinal mucus barrier. We began our investigations by comparing Salmonella-induced colitis and mucus dynamics in Muc2-deficient (Muc2(-/-)) mice, C3GnT(-/-) mice, and wild-type C57BL/6 (WT) mice. Salmonella infection led to increases in luminal Muc2 secretion in WT and C3GnT(-/-) mice. When Muc2(-/-) mice were infected with Salmonella, they showed dramatic susceptibility to infection, carrying significantly higher cecal and liver pathogen burdens, and developing significantly higher barrier disruption and higher mortality rates, than WT mice. We found that the exaggerated barrier disruption in infected Muc2(-/-) mice was invA dependent. We also tested the susceptibility of C3GnT(-/-) mice and found that they carried pathogen burdens similar to those of WT mice but developed exaggerated barrier disruption. Moreover, we found that Muc2(-/-) mice were impaired in intestinal alkaline phosphatase (IAP) expression and lipopolysaccharide (LPS) detoxification activity in their ceca, potentially explaining their high mortality rates during infection. Our data suggest that the intestinal mucus layer (Muc2) and core 3 O-glycosylation play critical roles in controlling Salmonella intestinal burdens and intestinal epithelial barrier function, respectively.
鼠伤寒沙门氏菌是一种用于探索沙门氏菌发病机制中致病策略的模式生物。尽管肠道粘液是肠道的第一道防线,但它在保护肠道免受沙门氏菌侵害方面的作用仍不清楚。肠道粘液层主要由 Muc2 粘蛋白组成,这是一种高度 O-糖基化的糖蛋白。Muc2 的核心 3 衍生 O-聚糖由核心 3β1,3-N-乙酰氨基葡萄糖基转移酶(C3GnT)合成。缺乏这些糖的小鼠仍然产生 Muc2,但表现出更薄的肠道粘液屏障。我们开始通过比较 Muc2 缺陷型(Muc2(-/-))小鼠、C3GnT(-/-)小鼠和野生型 C57BL/6(WT)小鼠中沙门氏菌诱导的结肠炎和粘液动力学来进行研究。沙门氏菌感染导致 WT 和 C3GnT(-/-)小鼠中腔内 Muc2 分泌增加。当 Muc2(-/-)小鼠感染沙门氏菌时,它们对感染表现出明显的易感性,盲肠和肝脏中的病原体负担明显更高,屏障破坏程度更高,死亡率更高,与 WT 小鼠相比。我们发现感染的 Muc2(-/-)小鼠中过度的屏障破坏依赖于 invA。我们还测试了 C3GnT(-/-)小鼠的易感性,发现它们携带的病原体负担与 WT 小鼠相似,但表现出过度的屏障破坏。此外,我们发现 Muc2(-/-)小鼠在其盲肠中表达肠道碱性磷酸酶(IAP)和脂多糖(LPS)解毒活性受损,这可能解释了它们在感染期间的高死亡率。我们的数据表明,肠道粘液层(Muc2)和核心 3 O-糖基化分别在控制肠道沙门氏菌负担和肠道上皮屏障功能方面发挥着关键作用。