Suppr超能文献

使咖啡因可见:荧光咖啡因“交通灯”检测器。

Make caffeine visible: a fluorescent caffeine "traffic light" detector.

机构信息

Department of Chemistry & MedChem Program of Life Sciences Institute, National University of Singapore, 117543 Singapore.

出版信息

Sci Rep. 2013;3:2255. doi: 10.1038/srep02255.

Abstract

Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.

摘要

咖啡因广泛存在于饮料和药物中,因此受到了大量关注。然而,如何灵敏、便捷地检测咖啡因仍然是一个挑战,尤其是在资源有限的地区。在此,我们报道了一种新型的水相荧光咖啡因传感器,名为“Caffeine Orange”,它在咖啡因的激活下表现出 250 倍的荧光增强,具有高选择性。核磁共振波谱和傅里叶变换红外光谱表明,π-堆积和氢键有助于它们的相互作用,而动态光散射和透射电子显微镜实验表明,Caffeine Orange 环境的变化会引起其荧光发射。为了在实际生活中利用这种探针,我们开发了一种无毒的咖啡因检测试剂盒,并测试了它在各种饮料中的咖啡因定量检测。通过激光笔照射时的颜色变化,可以实现对各种咖啡因浓度的肉眼感应。最后,我们在微流控装置上实现了整个系统,使咖啡因检测快速、灵敏和自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8b/3719075/d4a79fe60dc9/srep02255-f1.jpg

相似文献

2
Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid.
Sensors (Basel). 2020 Feb 3;20(3):819. doi: 10.3390/s20030819.
3
Fluorescence sensing of caffeine in aqueous solution with carbazole-based probe and imaging application in live cells.
Bioorg Med Chem Lett. 2012 Sep 1;22(17):5379-83. doi: 10.1016/j.bmcl.2012.07.055. Epub 2012 Jul 21.
4
Probing the interior of self-assembled caffeine dimer at various temperatures.
J Fluoresc. 2012 Mar;22(2):753-69. doi: 10.1007/s10895-011-1011-3. Epub 2011 Nov 10.
5
A graphene oxide-based fluorescent sensor for recognition of glutamate in aqueous solutions and bovine serum.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Oct 5;221:117204. doi: 10.1016/j.saa.2019.117204. Epub 2019 May 27.
6
Fluorescence Based Turn-on Probe for the Determination of Caffeine Using Europium-Tetracycline as Energy Transfer Complex.
J Fluoresc. 2016 May;26(3):1115-21. doi: 10.1007/s10895-016-1803-6. Epub 2016 Apr 11.
8
Fluorescent Biosensors Based on Single-Molecule Counting.
Acc Chem Res. 2016 Sep 20;49(9):1722-30. doi: 10.1021/acs.accounts.6b00237. Epub 2016 Sep 1.
9
A phenolphthalein-based fluorescent probe for the sequential sensing of Al and F ions in aqueous medium and live cells.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Feb 5;208:131-139. doi: 10.1016/j.saa.2018.09.064. Epub 2018 Oct 6.
10
A simple approach to detect caffeine in tea beverages.
J Agric Food Chem. 2013 Apr 24;61(16):3814-20. doi: 10.1021/jf400293u. Epub 2013 Apr 10.

引用本文的文献

1
Fluorescence modulation of nanodiamond NV centers for neurochemical detection.
MRS Adv. 2022 Nov;7(30):766-771. doi: 10.1557/s43580-022-00322-2. Epub 2022 Aug 18.
3
Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid.
Sensors (Basel). 2020 Feb 3;20(3):819. doi: 10.3390/s20030819.
5
Simultaneous Identification of Neutral and Anionic Species in Complex Mixtures without Separation.
Angew Chem Int Ed Engl. 2016 Jan 18;55(3):917-21. doi: 10.1002/anie.201508085. Epub 2015 Nov 2.
6
Discovery of a structural-element specific G-quadruplex "light-up" probe.
Sci Rep. 2014 Jan 20;4:3776. doi: 10.1038/srep03776.

本文引用的文献

1
A ratiometric fluorescence sensor for caffeine.
Org Biomol Chem. 2012 Oct 7;10(37):7487-90. doi: 10.1039/c2ob26117k. Epub 2012 Aug 9.
2
Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes.
J Am Chem Soc. 2012 Aug 15;134(32):13386-95. doi: 10.1021/ja304239g. Epub 2012 Aug 7.
3
Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region.
Chemosphere. 2012 Jun;88(1):131-9. doi: 10.1016/j.chemosphere.2012.03.016. Epub 2012 Apr 2.
4
Lab-on-a-disc for fully integrated multiplex immunoassays.
Anal Chem. 2012 Mar 6;84(5):2133-40. doi: 10.1021/ac203163u. Epub 2012 Feb 13.
5
Synthesis of a novel BODIPY library and its application in the discovery of a fructose sensor.
ACS Comb Sci. 2012 Feb 13;14(2):81-4. doi: 10.1021/co200136b. Epub 2012 Jan 27.
6
Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area.
Chemosphere. 2012 Jan;86(2):118-23. doi: 10.1016/j.chemosphere.2011.09.033. Epub 2011 Nov 8.
7
Diversity-oriented optical imaging probe development.
Curr Opin Chem Biol. 2011 Dec;15(6):760-7. doi: 10.1016/j.cbpa.2011.10.007. Epub 2011 Nov 4.
8
Fluorescence sensing of caffeine in water with polysulfonated pyrenes.
Chem Commun (Camb). 2011 Oct 14;47(38):10584-6. doi: 10.1039/c1cc13927d. Epub 2011 Aug 26.
10
Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood.
Lab Chip. 2011 Jan 7;11(1):70-8. doi: 10.1039/c0lc00205d. Epub 2010 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验