Suppr超能文献

CD73 蛋白作为 FK866 处理的肿瘤细胞中持续 NAD+ 生物合成的细胞外前体来源。

CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.

机构信息

From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and.

the Department of Internal Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy and.

出版信息

J Biol Chem. 2013 Sep 6;288(36):25938-25949. doi: 10.1074/jbc.M113.470435. Epub 2013 Jul 23.

Abstract

NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.

摘要

NAD(+) 主要通过从烟酰胺、烟酸或烟酰胺核糖(NR)开始的“补救”途径在人体细胞中合成。FK866 抑制烟酰胺磷酸核糖基转移酶(NAMPT)的酶,催化“补救”途径中从烟酰胺开始的第一个反应,在几种实体瘤和血液系统癌症的临床前模型中表现出很强的抗肿瘤活性。然而,在使用 FK866 进行的临床研究中,没有观察到肿瘤缓解。在这里,我们证明了细胞外 NAD(+) 或 NAD(+) 前体烟酰胺单核苷酸(NMN)和 NR 的低微摩尔浓度可以逆转 FK866 诱导的细胞死亡,这代表了 NAMPT 抑制作为抗癌疗法失败的一个合理解释。NMN 是外切酶 CD38 和 CD73 的底物,分别产生 NAM 和 NR。在这项研究中,我们研究了 CD38 和 CD73 在提供细胞外 NAD(+) 前体用于 NAD(+) 生物合成以及调节细胞对 FK866 的敏感性方面的作用。通过特异性沉默或过表达 CD38 和 CD73,我们证明内源性 CD73 能够,而 CD38 则削弱了细胞外 NMN 向 NR 的转化,NR 作为细胞内 NAD(+) 生物合成的前体。此外,在用 FK866 处理的细胞中补充细胞外 NMN 时,肿瘤细胞中的细胞活力在药物抑制或 CD73 的特异性下调后大大降低。因此,我们的研究表明,干扰 CD73 活性的遗传或药物干预可能有助于提高癌症细胞对 NAMPT 抑制剂的敏感性。

相似文献

1
CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.
J Biol Chem. 2013 Sep 6;288(36):25938-25949. doi: 10.1074/jbc.M113.470435. Epub 2013 Jul 23.
2
Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.
Oncotarget. 2016 Jan 19;7(3):2968-84. doi: 10.18632/oncotarget.6502.
3
NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms.
Neuroscience. 2015 Apr 16;291:230-40. doi: 10.1016/j.neuroscience.2015.02.007. Epub 2015 Feb 12.
4
FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells.
Biochem Biophys Res Commun. 2015 Mar 6;458(2):334-40. doi: 10.1016/j.bbrc.2015.01.111. Epub 2015 Feb 3.
7
Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside.
Biochem Pharmacol. 2020 Aug;178:114019. doi: 10.1016/j.bcp.2020.114019. Epub 2020 May 8.
10
Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo.
Biochem Pharmacol. 2009 May 15;77(10):1612-20. doi: 10.1016/j.bcp.2009.02.017. Epub 2009 Mar 5.

引用本文的文献

1
The role of NAD metabolism and its modulation of mitochondria in aging and disease.
NPJ Metab Health Dis. 2025 Jun 18;3(1):26. doi: 10.1038/s44324-025-00067-0.
2
Transporters in vitamin uptake and cellular metabolism: impacts on health and disease.
Life Metab. 2025 Mar 10;4(3):loaf008. doi: 10.1093/lifemeta/loaf008. eCollection 2025 Jun.
4
The function of nicotinamide phosphoribosyl transferase (NAMPT) and its role in diseases.
Front Mol Biosci. 2024 Oct 24;11:1480617. doi: 10.3389/fmolb.2024.1480617. eCollection 2024.
5
Biological Functions and Therapeutic Potential of NAD Metabolism in Gynecological Cancers.
Cancers (Basel). 2024 Sep 5;16(17):3085. doi: 10.3390/cancers16173085.
6
Regulation of CD73 on NAD metabolism: Unravelling the interplay between tumour immunity and tumour metabolism.
Cell Commun Signal. 2024 Aug 1;22(1):387. doi: 10.1186/s12964-024-01755-y.
8
Distinct Capabilities in NAD Metabolism Mediate Resistance to NAMPT Inhibition in Glioblastoma.
Cancers (Basel). 2024 May 29;16(11):2054. doi: 10.3390/cancers16112054.
10
Dual-inhibition of NAMPT and PAK4 induces anti-tumor effects in 3D-spheroids model of platinum-resistant ovarian cancer.
Cancer Gene Ther. 2024 May;31(5):721-735. doi: 10.1038/s41417-024-00748-w. Epub 2024 Feb 29.

本文引用的文献

1
Exploring the therapeutic space around NAD+.
J Cell Biol. 2012 Oct 15;199(2):205-9. doi: 10.1083/jcb.201207019.
2
The NAD metabolome--a key determinant of cancer cell biology.
Nat Rev Cancer. 2012 Nov;12(11):741-52. doi: 10.1038/nrc3340. Epub 2012 Sep 28.
4
Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells.
EMBO Mol Med. 2012 Oct;4(10):1087-96. doi: 10.1002/emmm.201201250. Epub 2012 Aug 30.
5
Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma.
J Immunol. 2012 Sep 1;189(5):2226-33. doi: 10.4049/jimmunol.1200744. Epub 2012 Jul 23.
6
Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization.
J Biol Chem. 2012 Sep 14;287(38):31633-40. doi: 10.1074/jbc.R112.349464. Epub 2012 Jul 20.
7
The dynamic regulation of NAD metabolism in mitochondria.
Trends Endocrinol Metab. 2012 Sep;23(9):420-8. doi: 10.1016/j.tem.2012.06.005. Epub 2012 Jul 21.
8
CD73 promotes tumor growth and metastasis.
Oncoimmunology. 2012 Jan 1;1(1):67-70. doi: 10.4161/onci.1.1.18068.
9
CD73: a potent suppressor of antitumor immune responses.
Trends Immunol. 2012 May;33(5):231-7. doi: 10.1016/j.it.2012.02.009. Epub 2012 Apr 7.
10
Inhibition of nicotinamide phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial infarction.
Antioxid Redox Signal. 2013 Feb 20;18(6):630-41. doi: 10.1089/ars.2011.4487. Epub 2012 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验