Suppr超能文献

抑制烟酰胺磷酸核糖转移酶(NAMPT),一种NAD+生物合成所必需的酶,会导致癌细胞碳水化合物代谢改变。

Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an Enzyme Essential for NAD+ Biosynthesis, Leads to Altered Carbohydrate Metabolism in Cancer Cells.

作者信息

Tan Bo, Dong Sucai, Shepard Robert L, Kays Lisa, Roth Kenneth D, Geeganage Sandaruwan, Kuo Ming-Shang, Zhao Genshi

机构信息

Discovery Chemistry, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285.

Cancer Research, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285.

出版信息

J Biol Chem. 2015 Jun 19;290(25):15812-15824. doi: 10.1074/jbc.M114.632141. Epub 2015 May 5.

Abstract

Nicotinamide phosphoribosyltransferase (NAMPT) has been extensively studied due to its essential role in NAD(+) biosynthesis in cancer cells and the prospect of developing novel therapeutics. To understand how NAMPT regulates cellular metabolism, we have shown that the treatment with FK866, a specific NAMPT inhibitor, leads to attenuation of glycolysis by blocking the glyceraldehyde 3-phosphate dehydrogenase step (Tan, B., Young, D. A., Lu, Z. H., Wang, T., Meier, T. I., Shepard, R. L., Roth, K., Zhai, Y., Huss, K., Kuo, M. S., Gillig, J., Parthasarathy, S., Burkholder, T. P., Smith, M. C., Geeganage, S., and Zhao, G. (2013) Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD(+) biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 288, 3500-3511). Due to technical limitations, we failed to separate isotopomers of phosphorylated sugars. In this study, we developed an enabling LC-MS methodology. Using this, we confirmed the previous findings and also showed that NAMPT inhibition led to accumulation of fructose 1-phosphate and sedoheptulose 1-phosphate but not glucose 6-phosphate, fructose 6-phosphate, and sedoheptulose 7-phosphate as previously thought. To investigate the metabolic basis of the metabolite formation, we carried out biochemical and cellular studies and established the following. First, glucose-labeling studies indicated that fructose 1-phosphate was derived from dihydroxyacetone phosphate and glyceraldehyde, and sedoheptulose 1-phosphate was derived from dihydroxyacetone phosphate and erythrose via an aldolase reaction. Second, biochemical studies showed that aldolase indeed catalyzed these reactions. Third, glyceraldehyde- and erythrose-labeling studies showed increased incorporation of corresponding labels into fructose 1-phosphate and sedoheptulose 1-phosphate in FK866-treated cells. Fourth, NAMPT inhibition led to increased glyceraldehyde and erythrose levels in the cell. Finally, glucose-labeling studies showed accumulated fructose 1,6-bisphosphate in FK866-treated cells mainly derived from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Taken together, this study shows that NAMPT inhibition leads to attenuation of glycolysis, resulting in further perturbation of carbohydrate metabolism in cancer cells. The potential clinical implications of these findings are also discussed.

摘要

烟酰胺磷酸核糖转移酶(NAMPT)因其在癌细胞NAD⁺生物合成中的关键作用以及开发新型疗法的前景而受到广泛研究。为了了解NAMPT如何调节细胞代谢,我们发现用特异性NAMPT抑制剂FK866处理会通过阻断甘油醛3-磷酸脱氢酶步骤导致糖酵解减弱(谭,B.,杨,D.A.,卢,Z.H.,王,T.,迈尔,T.I.,谢泼德,R.L.,罗斯,K.,翟,Y.,胡斯,K.,郭,M.S.,吉利格,J.,帕尔塔萨拉蒂,S.,伯克霍尔德,T.P.,史密斯,M.C.,吉根纳奇,S.,和赵,G.(2013年)人癌细胞中对NAD⁺生物合成至关重要的酶烟酰胺磷酸核糖转移酶(NAMPT)的药理学抑制:代谢基础和潜在临床意义。《生物化学杂志》288,3500 - 3511)。由于技术限制,我们未能分离磷酸化糖的同位素异构体。在本研究中,我们开发了一种可行的液相色谱 - 质谱方法。利用该方法,我们证实了先前的发现,并且还表明NAMPT抑制导致1 - 磷酸果糖和1 - 磷酸景天庚酮糖积累,而不像之前认为的那样导致6 - 磷酸葡萄糖、6 - 磷酸果糖和7 - 磷酸景天庚酮糖积累。为了研究代谢物形成的代谢基础,我们进行了生化和细胞研究并得出以下结论。首先,葡萄糖标记研究表明1 - 磷酸果糖源自磷酸二羟丙酮和甘油醛,1 - 磷酸景天庚酮糖通过醛缩酶反应源自磷酸二羟丙酮和赤藓糖。其次,生化研究表明醛缩酶确实催化了这些反应。第三,甘油醛和赤藓糖标记研究表明在FK866处理的细胞中,相应标记物更多地掺入到1 - 磷酸果糖和1 - 磷酸景天庚酮糖中。第四,NAMPT抑制导致细胞中甘油醛和赤藓糖水平升高。最后,葡萄糖标记研究表明FK866处理的细胞中积累的1,6 - 二磷酸果糖主要源自磷酸二羟丙酮和3 - 磷酸甘油醛。综上所述,本研究表明NAMPT抑制导致糖酵解减弱,进而导致癌细胞碳水化合物代谢的进一步紊乱。还讨论了这些发现的潜在临床意义。

相似文献

引用本文的文献

6
Cancer-associated adipocytes in the ovarian cancer microenvironment.卵巢癌微环境中与癌症相关的脂肪细胞。
Am J Cancer Res. 2024 Jul 15;14(7):3259-3279. doi: 10.62347/XZRI9189. eCollection 2024.

本文引用的文献

6
Riboneogenesis in yeast.酵母中的核糖生成。
Cell. 2011 Jun 10;145(6):969-80. doi: 10.1016/j.cell.2011.05.022.
8
Triosephosphate isomerase: a highly evolved biocatalyst.磷酸丙糖异构酶:高度进化的生物催化剂。
Cell Mol Life Sci. 2010 Dec;67(23):3961-82. doi: 10.1007/s00018-010-0473-9. Epub 2010 Aug 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验