Institut Pasteur de Lille, Center for Infection and Immunity, Lille, France.
BMC Microbiol. 2013 Jul 24;13:172. doi: 10.1186/1471-2180-13-172.
In bacteria, signal-transduction two-component systems are major players for adaptation to environmental stimuli. The perception of a chemical or physical signal by a sensor-kinase triggers its autophosphorylation. The phosphoryl group is then transferred to the cognate response regulator, which mediates the appropriate adaptive response. Virulence of the whooping cough agent Bordetella pertussis is controlled by the two-component system BvgAS. Atypically, the sensor-kinase BvgS is active without specific stimuli at 37°C in laboratory conditions and is inactivated by the addition of negative chemical modulators. The structure of BvgS is complex, with two tandem periplasmic Venus flytrap domains and a cytoplasmic PAS domain that precedes the kinase domain, which is followed by additional phosphotransfer domains. PAS domains are small, ubiquitous sensing or regulatory domains. The function of the PAS domain in BvgS remains unknown.
We showed that recombinant BvgS PAS proteins form dimers that are stabilized by α helical regions flanking the PAS core. A structural model of the PAS domain dimer was built and probed by site-directed mutagenesis and by biochemical and functional analyses. Although we found no ligands for the PAS domain cavity, its integrity is required for signaling. We also showed that the structural stability of the PAS core and its proper coupling to its flanking N- and C-terminal α helices are crucial for BvgS activity.
We propose that a major function of the BvgS PAS domain is to maintain conformational signals arising from mechanical strain generated by the periplasmic domain. The tight structure of the PAS core and its connections with the upstream and downstream helices ensure signaling to the kinase domain, which determines BvgS activity. Many mild substitutions that map to the PAS domain keep BvgS active but make it unresponsive to negative modulators, supporting that modulation increases conformational strain in the protein.
在细菌中,信号转导双组分系统是适应环境刺激的主要参与者。传感器激酶对化学或物理信号的感知会触发其自身磷酸化。磷酸基团随后被转移到同源的应答调节因子,后者介导适当的适应性反应。百日咳病原体博德特氏菌的毒力受双组分系统 BvgAS 控制。不同寻常的是,传感器激酶 BvgS 在实验室条件下 37°C 时没有特定刺激也保持活跃,并被负化学调节剂的添加所抑制。BvgS 的结构复杂,包含两个串联的周质 Venus flytrap 结构域和一个位于激酶结构域之前的细胞质 PAS 结构域,其后是额外的磷酸转移结构域。PAS 结构域是小而普遍存在的感应或调节结构域。BvgS 中 PAS 结构域的功能尚不清楚。
我们表明,重组 BvgS PAS 蛋白形成二聚体,其由侧翼 PAS 核心的α螺旋区域稳定。构建了 PAS 结构域二聚体的结构模型,并通过定点突变和生化及功能分析进行了探测。虽然我们没有发现 PAS 结构域腔的配体,但它的完整性是信号传递所必需的。我们还表明,PAS 核心的结构稳定性及其与侧翼 N 和 C 端α螺旋的正确连接对于 BvgS 活性至关重要。
我们提出,BvgS PAS 结构域的主要功能是维持由周质域产生的机械应变引起的构象信号。PAS 核心的紧密结构及其与上下游螺旋的连接确保了信号传递到激酶结构域,从而决定了 BvgS 的活性。许多映射到 PAS 结构域的温和取代使 BvgS 保持活性,但使其对负调节剂无反应,这表明调节会增加蛋白质中的构象应变。