Suppr超能文献

水稳态的热调节和渗透调节的整合:TRPV 通道的作用。

Integration of thermal and osmotic regulation of water homeostasis: the role of TRPV channels.

机构信息

Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; and.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2013 Oct 1;305(7):R669-78. doi: 10.1152/ajpregu.00270.2013. Epub 2013 Jul 24.

Abstract

Maintenance of body water homeostasis is critical for preventing hyperthermia, because evaporative cooling is the most efficient means of dissipating excess body heat. Water homeostasis is achieved by regulation of water intake and water loss by the kidneys. The former is achieved by sensations of thirst that motivate water acquisition, whereas the latter is regulated by the antidiuretic action of vasopressin. Vasopressin secretion and thirst are stimulated by increases in the osmolality of the extracellular fluid as well as decreases in blood pressure and/or blood volume, signals that are precipitated by water depletion associated with the excess evaporative water loss required to prevent hyperthermia. In addition, they are stimulated by increases in body temperature. The sites and molecular mechanisms involved in integrating thermal and osmotic regulation of thirst and vasopressin secretion are reviewed here with a focus on the role of the thermal and mechanosensitive transient receptor potential-vanilloid (TRPV) family of ion channels.

摘要

维持身体水稳态对于预防体温过高至关重要,因为蒸发冷却是散发过多体热的最有效方法。水稳态是通过肾脏调节水的摄入和损失来实现的。前者是通过口渴感来实现的,口渴感促使人们获取水分,而后者则受血管加压素的抗利尿作用调节。血管加压素的分泌和口渴感受到细胞外液渗透压升高以及血压和/或血容量降低的刺激,这些信号是由与预防体温过高所需的过度蒸发水损失相关的水耗竭引起的。此外,它们还受到体温升高的刺激。本文综述了涉及口渴和血管加压素分泌的热和渗透调节的整合的部位和分子机制,重点介绍了热和机械敏感瞬时受体电位香草醛 (TRPV) 家族离子通道的作用。

相似文献

1
Integration of thermal and osmotic regulation of water homeostasis: the role of TRPV channels.
Am J Physiol Regul Integr Comp Physiol. 2013 Oct 1;305(7):R669-78. doi: 10.1152/ajpregu.00270.2013. Epub 2013 Jul 24.
2
Contribution of TRPV channels to osmosensory transduction, thirst, and vasopressin release.
Kidney Int. 2008 Apr;73(7):811-5. doi: 10.1038/sj.ki.5002788. Epub 2008 Jan 16.
3
Osmotic and thermal control of magnocellular neurosecretory neurons--role of an N-terminal variant of trpv1.
Eur J Neurosci. 2010 Dec;32(12):2022-30. doi: 10.1111/j.1460-9568.2010.07512.x.
4
Hypernatremia-induced vasopressin secretion is not altered in TRPV1-/- rats.
Am J Physiol Regul Integr Comp Physiol. 2016 Sep 1;311(3):R451-6. doi: 10.1152/ajpregu.00483.2015. Epub 2016 Jun 22.
5
Vasopressin regulation of maternal body fluid balance in pregnancy and lactation: A role for TRPV channels?
Mol Cell Endocrinol. 2022 Dec 1;558:111764. doi: 10.1016/j.mce.2022.111764. Epub 2022 Aug 28.
6
Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia.
Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1285-93. doi: 10.1152/ajpregu.00003.2008. Epub 2008 Feb 13.
8
Vasopressin at Central Levels and Consequences of Dehydration.
Ann Nutr Metab. 2016;68 Suppl 2:19-23. doi: 10.1159/000446200. Epub 2016 Jun 16.
10
Physiology and Pathophysiology of Water Homeostasis.
Front Horm Res. 2019;52:8-23. doi: 10.1159/000493233. Epub 2019 Jan 15.

引用本文的文献

2
Global warming and obesity: External heat exposure as a modulator of energy balance.
FASEB Bioadv. 2025 Mar 18;7(4):e1487. doi: 10.1096/fba.2024-00140. eCollection 2025 Apr.
4
Osmotically evoked PLCδ1-dependent translocation of ΔN-TRPV1 channels in rat supraoptic neurons.
iScience. 2023 Feb 20;26(3):106258. doi: 10.1016/j.isci.2023.106258. eCollection 2023 Mar 17.
6
Glial functions in the blood-brain communication at the circumventricular organs.
Front Neurosci. 2022 Oct 6;16:991779. doi: 10.3389/fnins.2022.991779. eCollection 2022.
8
Near-infrared stimulation of the auditory nerve: A decade of progress toward an optical cochlear implant.
Laryngoscope Investig Otolaryngol. 2021 Mar 12;6(2):310-319. doi: 10.1002/lio2.541. eCollection 2021 Apr.
9
Infrared neural stimulation at different wavelengths and pulse shapes.
Prog Biophys Mol Biol. 2021 Jul;162:89-100. doi: 10.1016/j.pbiomolbio.2020.12.004. Epub 2020 Dec 24.

本文引用的文献

2
Expression and distribution of TRPV2 in rat brain.
Exp Neurol. 2012 Sep;237(1):223-37. doi: 10.1016/j.expneurol.2012.06.017. Epub 2012 Jun 27.
4
Epithelial Na⁺ sodium channels in magnocellular cells of the rat supraoptic and paraventricular nuclei.
Am J Physiol Endocrinol Metab. 2012 Feb 1;302(3):E273-85. doi: 10.1152/ajpendo.00407.2011. Epub 2011 Nov 1.
6
Central circuitries for body temperature regulation and fever.
Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1207-28. doi: 10.1152/ajpregu.00109.2011. Epub 2011 Sep 7.
8
Central neural pathways for thermoregulation.
Front Biosci (Landmark Ed). 2011 Jan 1;16(1):74-104. doi: 10.2741/3677.
9
The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not.
Pharmacol Rev. 2009 Sep;61(3):228-61. doi: 10.1124/pr.109.001263. Epub 2009 Sep 11.
10
Anteroventral third ventricle periventricular ablation: Temporary adipsia and persisting thirst deficits.
Neurosci Lett. 1977 Jul;5(3-4):177-82. doi: 10.1016/0304-3940(77)90043-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验