Suppr超能文献

具有非相干 1 型前馈环的网络中敏感响应和精确适应的代价。

The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop.

机构信息

Department of Physics, George Washington University, 725 21st Street NW, Washington, DC 20052, USA.

出版信息

J R Soc Interface. 2013 Jul 24;10(87):20130489. doi: 10.1098/rsif.2013.0489. Print 2013 Oct 6.

Abstract

The incoherent type-1 feed-forward loop (I1-FFL) is ubiquitous in biological regulatory circuits. Although much is known about the functions of the I1-FFL motif, the energy cost incurred in the network and how it affects the performance of the network have not been investigated. Here, we study a generic I1-FFL enzymatic reaction network modelled after the GEF-GAP-Ras pathway responsible for chemosensory adaptation in eukaryotic cells. Our analysis shows that the I1-FFL network always operates out of equilibrium. Continuous energy dissipation is necessary to drive an internal phosphorylation-dephosphorylation cycle that is crucial in achieving strong short-time response and accurate long-time adaptation. In particular, we show quantitatively that the energy dissipated in the I1-FFL network is used (i) to increase the system's initial response to the input signals; (ii) to enhance the adaptation accuracy at steady state; and (iii) to expand the range of such accurate adaptation. Moreover, we find that the energy dissipation rate, the catalytic speed and the maximum adaptation accuracy in the I1-FFL network satisfy the same energy-speed-accuracy relationship as in the negative-feedback-loop (NFL) networks. Because the I1-FFL and NFL are the only two basic network motifs that enable accurate adaptation, our results suggest that a universal cost-performance trade-off principle may underlie all cellular adaptation processes independent of the detailed biochemical circuit architecture.

摘要

I 型前馈非相干环(I1-FFL)在生物调节回路中普遍存在。尽管人们对 I1-FFL 基序的功能了解很多,但网络中的能量成本及其如何影响网络性能尚未得到研究。在这里,我们研究了一个通用的 I1-FFL 酶促反应网络,该网络模拟了真核细胞中负责化学感觉适应的 GEF-GAP-Ras 途径。我们的分析表明,I1-FFL 网络总是处于非平衡状态。连续的能量耗散是驱动内部磷酸化-去磷酸化循环所必需的,该循环对于实现强的短时间响应和准确的长时间适应至关重要。特别是,我们定量地表明,I1-FFL 网络中耗散的能量用于:(i) 增加系统对输入信号的初始响应;(ii) 提高稳态时的适应精度;(iii) 扩展这种准确适应的范围。此外,我们发现 I1-FFL 网络中的能量耗散率、催化速度和最大适应精度满足与负反馈环(NFL)网络相同的能量-速度-精度关系。由于 I1-FFL 和 NFL 是仅有的两种能够实现准确适应的基本网络基序,因此我们的结果表明,一种普遍的成本-性能权衡原则可能是所有独立于详细生化电路结构的细胞适应过程的基础。

相似文献

1
The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop.
J R Soc Interface. 2013 Jul 24;10(87):20130489. doi: 10.1098/rsif.2013.0489. Print 2013 Oct 6.
2
The incoherent feed-forward loop can generate non-monotonic input functions for genes.
Mol Syst Biol. 2008;4:203. doi: 10.1038/msb.2008.43. Epub 2008 Jul 15.
3
The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli.
J Mol Biol. 2006 Mar 10;356(5):1073-81. doi: 10.1016/j.jmb.2005.12.003. Epub 2005 Dec 19.
4
Environmental selection of the feed-forward loop circuit in gene-regulation networks.
Phys Biol. 2005 Jun;2(2):81-8. doi: 10.1088/1478-3975/2/2/001.
5
Structure and function of the feed-forward loop network motif.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11980-5. doi: 10.1073/pnas.2133841100. Epub 2003 Oct 6.
6
The engineering principles of combining a transcriptional incoherent feedforward loop with negative feedback.
J Biol Eng. 2019 Jul 10;13:62. doi: 10.1186/s13036-019-0190-3. eCollection 2019.
7
Modelling and analysis of a gene-regulatory feed-forward loop with basal expression of the second regulator.
J Theor Biol. 2014 Dec 21;363:290-9. doi: 10.1016/j.jtbi.2014.08.043. Epub 2014 Sep 1.
8
Model-Based Investigation of the Relationship between Regulation Level and Pulse Property of I1-FFL Gene Circuits.
ACS Synth Biol. 2022 Jul 15;11(7):2417-2428. doi: 10.1021/acssynbio.2c00109. Epub 2022 Jun 21.
9
A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli.
Mol Syst Biol. 2005;1:2005.0006. doi: 10.1038/msb4100010. Epub 2005 Mar 29.

引用本文的文献

1
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2026786118.
3
Proofreading through spatial gradients.
Elife. 2020 Dec 24;9:e60415. doi: 10.7554/eLife.60415.
4
Stochastic Dynamics of Gene Switching and Energy Dissipation for Gene Expression.
Front Genet. 2020 Jul 2;11:676. doi: 10.3389/fgene.2020.00676. eCollection 2020.
5
Adaptation of Living Systems.
Annu Rev Condens Matter Phys. 2018 Mar;9:183-205. doi: 10.1146/annurev-conmatphys-033117-054046. Epub 2017 Dec 8.
6
Information processing in bacteria: memory, computation, and statistical physics: a key issues review.
Rep Prog Phys. 2016 May;79(5):052601. doi: 10.1088/0034-4885/79/5/052601. Epub 2016 Apr 8.
7
The free energy cost of accurate biochemical oscillations.
Nat Phys. 2015 Sep;11(9):772-778. doi: 10.1038/nphys3412. Epub 2015 Jul 27.
8
An Optimal Free Energy Dissipation Strategy of the MinCDE Oscillator in Regulating Symmetric Bacterial Cell Division.
PLoS Comput Biol. 2015 Aug 28;11(8):e1004351. doi: 10.1371/journal.pcbi.1004351. eCollection 2015 Aug.
9
Adaptive Responses Limited by Intrinsic Noise.
PLoS One. 2015 Aug 25;10(8):e0136095. doi: 10.1371/journal.pone.0136095. eCollection 2015.
10
Thermodynamic costs of information processing in sensory adaptation.
PLoS Comput Biol. 2014 Dec 11;10(12):e1003974. doi: 10.1371/journal.pcbi.1003974. eCollection 2014 Dec.

本文引用的文献

1
The energy-speed-accuracy tradeoff in sensory adaptation.
Nat Phys. 2012 May 1;8(5):422-428. doi: 10.1038/nphys2276. Epub 2012 Mar 25.
3
The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters.
Biochemistry. 2011 May 31;50(21):4402-10. doi: 10.1021/bi2002289. Epub 2011 May 4.
4
Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?
Nat Rev Cancer. 2010 Dec;10(12):842-57. doi: 10.1038/nrc2960. Epub 2010 Nov 24.
5
Fold-change detection and scalar symmetry of sensory input fields.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000. doi: 10.1073/pnas.1002352107. Epub 2010 Aug 20.
6
The incoherent feedforward loop can provide fold-change detection in gene regulation.
Mol Cell. 2009 Dec 11;36(5):894-9. doi: 10.1016/j.molcel.2009.11.018.
7
Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling.
Mol Cell. 2009 Dec 11;36(5):872-84. doi: 10.1016/j.molcel.2009.11.017.
8
Defining network topologies that can achieve biochemical adaptation.
Cell. 2009 Aug 21;138(4):760-73. doi: 10.1016/j.cell.2009.06.013.
9
Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways.
Biophys J. 2007 Aug 1;93(3):806-21. doi: 10.1529/biophysj.107.107516. Epub 2007 May 18.
10
Network motifs: theory and experimental approaches.
Nat Rev Genet. 2007 Jun;8(6):450-61. doi: 10.1038/nrg2102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验