Department of Physics, George Washington University, 725 21st Street NW, Washington, DC 20052, USA.
J R Soc Interface. 2013 Jul 24;10(87):20130489. doi: 10.1098/rsif.2013.0489. Print 2013 Oct 6.
The incoherent type-1 feed-forward loop (I1-FFL) is ubiquitous in biological regulatory circuits. Although much is known about the functions of the I1-FFL motif, the energy cost incurred in the network and how it affects the performance of the network have not been investigated. Here, we study a generic I1-FFL enzymatic reaction network modelled after the GEF-GAP-Ras pathway responsible for chemosensory adaptation in eukaryotic cells. Our analysis shows that the I1-FFL network always operates out of equilibrium. Continuous energy dissipation is necessary to drive an internal phosphorylation-dephosphorylation cycle that is crucial in achieving strong short-time response and accurate long-time adaptation. In particular, we show quantitatively that the energy dissipated in the I1-FFL network is used (i) to increase the system's initial response to the input signals; (ii) to enhance the adaptation accuracy at steady state; and (iii) to expand the range of such accurate adaptation. Moreover, we find that the energy dissipation rate, the catalytic speed and the maximum adaptation accuracy in the I1-FFL network satisfy the same energy-speed-accuracy relationship as in the negative-feedback-loop (NFL) networks. Because the I1-FFL and NFL are the only two basic network motifs that enable accurate adaptation, our results suggest that a universal cost-performance trade-off principle may underlie all cellular adaptation processes independent of the detailed biochemical circuit architecture.
I 型前馈非相干环(I1-FFL)在生物调节回路中普遍存在。尽管人们对 I1-FFL 基序的功能了解很多,但网络中的能量成本及其如何影响网络性能尚未得到研究。在这里,我们研究了一个通用的 I1-FFL 酶促反应网络,该网络模拟了真核细胞中负责化学感觉适应的 GEF-GAP-Ras 途径。我们的分析表明,I1-FFL 网络总是处于非平衡状态。连续的能量耗散是驱动内部磷酸化-去磷酸化循环所必需的,该循环对于实现强的短时间响应和准确的长时间适应至关重要。特别是,我们定量地表明,I1-FFL 网络中耗散的能量用于:(i) 增加系统对输入信号的初始响应;(ii) 提高稳态时的适应精度;(iii) 扩展这种准确适应的范围。此外,我们发现 I1-FFL 网络中的能量耗散率、催化速度和最大适应精度满足与负反馈环(NFL)网络相同的能量-速度-精度关系。由于 I1-FFL 和 NFL 是仅有的两种能够实现准确适应的基本网络基序,因此我们的结果表明,一种普遍的成本-性能权衡原则可能是所有独立于详细生化电路结构的细胞适应过程的基础。