Suppr超能文献

感受野的折变化检测与标量对称性。

Fold-change detection and scalar symmetry of sensory input fields.

机构信息

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000. doi: 10.1073/pnas.1002352107. Epub 2010 Aug 20.

Abstract

Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold changes in input and not on absolute levels. Thus, a step change in input from, for example, level 1 to 2 gives precisely the same dynamical output as a step from level 2 to 4, because the steps have the same fold change. We ask what the benefit of FCD is and show that FCD is necessary and sufficient for sensory search to be independent of multiplying the input field by a scalar. Thus, the FCD search pattern depends only on the spatial profile of the input and not on its amplitude. Such scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing/convecting chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. Furthermore, we show that FCD entails two features found across sensory systems, exact adaptation and Weber's law, but that these two features are not sufficient for FCD. Finally, we present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feed-forward loops. We find that bacterial chemotaxis displays feedback within the present class and hence, is expected to show FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study, thus, suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields.

摘要

最近的研究表明,某些细胞感觉系统表现出折叠变化检测(FCD):一种响应,其整个形状,包括幅度和持续时间,仅取决于输入的折叠变化,而不取决于绝对水平。因此,输入从例如从 1 级到 2 级的阶跃变化与从 2 级到 4 级的阶跃变化产生完全相同的动力学输出,因为这两个步骤的折叠变化相同。我们问 FCD 的好处是什么,并表明 FCD 是感官搜索独立于将输入场乘以标量所必需和充分的。因此,FCD 搜索模式仅取决于输入的空间分布,而不取决于其幅度。这种标量对称性出现在广泛的感官输入中,例如源强度乘以化学趋化性中感知的扩散/对流化学场,环境光乘以视觉中的对比度场,以及蛋白质浓度乘以细胞信号系统中的输出。此外,我们表明 FCD 需要感官系统中发现的两个特征,即精确适应和韦伯定律,但这两个特征不足以满足 FCD。最后,我们提出了广泛的具有 FCD 的机制类别,包括某些非线性反馈和前馈循环。我们发现细菌趋化性在当前类别中显示出反馈,因此预计会显示 FCD。这可以解释趋化性搜索对吸引源水平不敏感的实验。因此,这项研究表明了生物感觉系统的特性与源于其输入场物理特性的标量对称性之间的联系。

相似文献

1
Fold-change detection and scalar symmetry of sensory input fields.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000. doi: 10.1073/pnas.1002352107. Epub 2010 Aug 20.
2
Logarithmic and power law input-output relations in sensory systems with fold-change detection.
PLoS Comput Biol. 2014 Aug 14;10(8):e1003781. doi: 10.1371/journal.pcbi.1003781. eCollection 2014 Aug.
3
Cellular sensory mechanisms for detecting specific fold-changes in extracellular cues.
Biophys J. 2014 Jan 7;106(1):279-88. doi: 10.1016/j.bpj.2013.10.039.
4
Response rescaling in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13870-5. doi: 10.1073/pnas.1108608108. Epub 2011 Aug 1.
5
Comparing apples and oranges: fold-change detection of multiple simultaneous inputs.
PLoS One. 2013;8(3):e57455. doi: 10.1371/journal.pone.0057455. Epub 2013 Mar 4.
6
Synthetic circuit for exact adaptation and fold-change detection.
Nucleic Acids Res. 2014 May;42(9):6078-89. doi: 10.1093/nar/gku233. Epub 2014 Apr 11.
7
Fold-change Response of Photosynthesis to Step Increases of Light Level.
iScience. 2018 Oct 26;8:126-137. doi: 10.1016/j.isci.2018.09.019. Epub 2018 Sep 26.
8
The incoherent feedforward loop can provide fold-change detection in gene regulation.
Mol Cell. 2009 Dec 11;36(5):894-9. doi: 10.1016/j.molcel.2009.11.018.
10
Fold-change detection in a whole-pathway model of Escherichia coli chemotaxis.
Bull Math Biol. 2014 Jun;76(6):1376-95. doi: 10.1007/s11538-014-9965-3. Epub 2014 May 9.

引用本文的文献

1
Cumulative dose responses for adapting biological systems.
J R Soc Interface. 2025 Aug;22(229):20240877. doi: 10.1098/rsif.2024.0877. Epub 2025 Aug 13.
2
Individual yeast cells signal at different levels but each with good precision.
R Soc Open Sci. 2025 Apr 30;12(4):241025. doi: 10.1098/rsos.241025. eCollection 2025 Apr.
3
Emerging roles of transcriptional condensates as temporal signal integrators.
Nat Rev Genet. 2025 Apr 16. doi: 10.1038/s41576-025-00837-y.
4
Multi-Layer Autocatalytic Feedback Enables Integral Control Amidst Resource Competition and Across Scales.
ACS Synth Biol. 2025 Apr 18;14(4):1041-1061. doi: 10.1021/acssynbio.4c00575. Epub 2025 Mar 21.
5
Temporal dose inversion properties of adaptive biomolecular circuits.
bioRxiv. 2025 Feb 11:2025.02.10.636967. doi: 10.1101/2025.02.10.636967.
6
Autism spectrum disorder variation as a computational trade-off via dynamic range of neuronal population responses.
Nat Neurosci. 2024 Dec;27(12):2476-2486. doi: 10.1038/s41593-024-01800-6. Epub 2024 Nov 27.
7
Background compensation revisited: Conserved phase response curves in frequency controlled homeostats with coherent feedback.
PLoS One. 2024 Sep 4;19(9):e0305804. doi: 10.1371/journal.pone.0305804. eCollection 2024.
8
Signal integration and adaptive sensory diversity tuning in Escherichia coli chemotaxis.
Cell Syst. 2024 Jul 17;15(7):628-638.e8. doi: 10.1016/j.cels.2024.06.003. Epub 2024 Jul 8.
9
Design patterns of biological cells.
Bioessays. 2024 Mar;46(3):e2300188. doi: 10.1002/bies.202300188. Epub 2024 Jan 21.
10
Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation.
Nat Commun. 2023 Oct 30;14(1):6929. doi: 10.1038/s41467-023-42643-2.

本文引用的文献

1
Bacterial strategies for chemotaxis response.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1391-6. doi: 10.1073/pnas.0909673107. Epub 2010 Jan 4.
2
The incoherent feedforward loop can provide fold-change detection in gene regulation.
Mol Cell. 2009 Dec 11;36(5):894-9. doi: 10.1016/j.molcel.2009.11.018.
3
Dynamics and variability of ERK2 response to EGF in individual living cells.
Mol Cell. 2009 Dec 11;36(5):885-93. doi: 10.1016/j.molcel.2009.11.025.
4
Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling.
Mol Cell. 2009 Dec 11;36(5):872-84. doi: 10.1016/j.molcel.2009.11.017.
5
The challenges natural images pose for visual adaptation.
Neuron. 2009 Dec 10;64(5):605-16. doi: 10.1016/j.neuron.2009.11.028.
6
Remarks on feedforward circuits, adaptation, and pulse memory.
IET Syst Biol. 2010 Jan;4(1):39-51. doi: 10.1049/iet-syb.2008.0171.
7
Defining network topologies that can achieve biochemical adaptation.
Cell. 2009 Aug 21;138(4):760-73. doi: 10.1016/j.cell.2009.06.013.
8
Logarithmic sensing in Escherichia coli bacterial chemotaxis.
Biophys J. 2009 Mar 18;96(6):2439-48. doi: 10.1016/j.bpj.2008.10.027.
9
Modeling the chemotactic response of Escherichia coli to time-varying stimuli.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60. doi: 10.1073/pnas.0807569105. Epub 2008 Sep 23.
10
Network motifs: theory and experimental approaches.
Nat Rev Genet. 2007 Jun;8(6):450-61. doi: 10.1038/nrg2102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验