Suppr超能文献

证据表明,β-连环蛋白的变化倍数而非绝对水平决定了 Wnt 信号通路。

Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling.

机构信息

Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Mol Cell. 2009 Dec 11;36(5):872-84. doi: 10.1016/j.molcel.2009.11.017.

Abstract

In response to Wnt stimulation, beta-catenin accumulates and activates target genes. Using modeling and experimental analysis, we found that the level of beta-catenin is sensitive to perturbations in the pathway, such that cellular variation would be expected to alter the signaling outcome. One unusual parameter was robust: the fold-change in beta-catenin level (post-Wnt/pre-Wnt). In Xenopus, dorsal-anterior development and target gene expression are robust to perturbations that alter the final level but leave the fold-change intact. These suggest, first, that despite cellular noise, the cell responds reliably to Wnt stimulation by maintaining a robust fold-change in beta-catenin. Second, the transcriptional machinery downstream of the Wnt pathway does not simply read the beta-catenin level after Wnt stimulation but computes fold-changes in beta-catenin. Analogous to Weber's Law in sensory physiology, some gene transcription networks must respond to fold-changes in signals, rather than absolute levels, which may buffer stochastic, genetic, and environmental variation.

摘要

针对 Wnt 的刺激,β-连环蛋白积累并激活靶基因。通过建模和实验分析,我们发现β-连环蛋白的水平对通路中的干扰很敏感,因此细胞的变异预计会改变信号转导的结果。一个不寻常的参数是稳健的:β-连环蛋白水平的变化倍数(Wnt 后/Wnt 前)。在爪蟾中,背-前发育和靶基因表达对改变最终水平但保持变化倍数不变的干扰具有稳健性。这首先表明,尽管存在细胞噪声,细胞通过维持β-连环蛋白的稳健变化倍数,可靠地对 Wnt 刺激做出反应。其次,Wnt 通路下游的转录机制在 Wnt 刺激后并不简单地读取β-连环蛋白水平,而是计算β-连环蛋白的变化倍数。类似于感觉生理学中的韦伯定律,一些基因转录网络必须对信号的变化倍数而不是绝对水平做出反应,这可能缓冲随机的、遗传的和环境的变异。

相似文献

1
Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling.
Mol Cell. 2009 Dec 11;36(5):872-84. doi: 10.1016/j.molcel.2009.11.017.
2
Requirement of Wnt/beta-catenin signaling in pronephric kidney development.
Mech Dev. 2009 Mar-Apr;126(3-4):142-59. doi: 10.1016/j.mod.2008.11.007. Epub 2008 Dec 7.
4
LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8032-7. doi: 10.1073/pnas.0803025105. Epub 2008 May 28.
6
Jun NH2-terminal kinase (JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16313-8. doi: 10.1073/pnas.0602557103. Epub 2006 Oct 23.
8
10
A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway.
J Biol Chem. 2010 May 7;285(19):14585-93. doi: 10.1074/jbc.M109.094334. Epub 2010 Mar 10.

引用本文的文献

2
Wnt target IQGAP3 promotes Wnt signaling via disrupting Axin1-CK1α interaction.
Oncogene. 2025 Aug 19. doi: 10.1038/s41388-025-03512-y.
3
Network motifs and hypermotifs in TGFβ-induced epithelial to mesenchymal transition and metastasis.
Front Syst Biol. 2023 Mar 3;3:1099951. doi: 10.3389/fsysb.2023.1099951. eCollection 2023.
4
Individual yeast cells signal at different levels but each with good precision.
R Soc Open Sci. 2025 Apr 30;12(4):241025. doi: 10.1098/rsos.241025. eCollection 2025 Apr.
5
Emerging roles of transcriptional condensates as temporal signal integrators.
Nat Rev Genet. 2025 Apr 16. doi: 10.1038/s41576-025-00837-y.
7
Anti-resonance in developmental signaling regulates cell fate decisions.
bioRxiv. 2025 Feb 11:2025.02.04.636331. doi: 10.1101/2025.02.04.636331.
8
Phenotypic consequences of logarithmic signaling in MAPK stress response.
iScience. 2024 Dec 19;28(1):111625. doi: 10.1016/j.isci.2024.111625. eCollection 2025 Jan 17.
9
Traveling-wave chemotaxis of neutrophil-like HL-60 cells.
Mol Biol Cell. 2025 Feb 1;36(2):ar17. doi: 10.1091/mbc.E24-06-0245. Epub 2024 Dec 24.
10

本文引用的文献

1
Wnt signalling and its impact on development and cancer.
Nat Rev Cancer. 2008 May;8(5):387-98. doi: 10.1038/nrc2389.
2
Dual positive and negative regulation of wingless signaling by adenomatous polyposis coli.
Science. 2008 Jan 18;319(5861):333-6. doi: 10.1126/science.1151232.
3
Phenotypic consequences of promoter-mediated transcriptional noise.
Mol Cell. 2006 Dec 28;24(6):853-65. doi: 10.1016/j.molcel.2006.11.003.
4
Noise in protein expression scales with natural protein abundance.
Nat Genet. 2006 Jun;38(6):636-43. doi: 10.1038/ng1807. Epub 2006 May 21.
6
Robustness of cellular functions.
Cell. 2004 Sep 17;118(6):675-85. doi: 10.1016/j.cell.2004.09.008.
7
Control of stochasticity in eukaryotic gene expression.
Science. 2004 Jun 18;304(5678):1811-4. doi: 10.1126/science.1098641. Epub 2004 May 27.
8
Summing up the noise in gene networks.
Nature. 2004 Jan 29;427(6973):415-8. doi: 10.1038/nature02257.
9
GSK-3-selective inhibitors derived from Tyrian purple indirubins.
Chem Biol. 2003 Dec;10(12):1255-66. doi: 10.1016/j.chembiol.2003.11.010.
10
The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway.
PLoS Biol. 2003 Oct;1(1):E10. doi: 10.1371/journal.pbio.0000010. Epub 2003 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验