Suppr超能文献

出壳后热孵会使成鸟喙变暖:日本鹌鹑不可逆的生理可塑性。

Post-hatch heat warms adult beaks: irreversible physiological plasticity in Japanese quail.

机构信息

Department of Biology, Trent University, Peterborough, Ontario, Canada K9J 7B8.

出版信息

Proc Biol Sci. 2013 Jul 24;280(1767):20131436. doi: 10.1098/rspb.2013.1436. Print 2013 Sep 22.

Abstract

Across taxa, the early rearing environment contributes to adult morphological and physiological variation. For example, in birds, environmental temperature plays a key role in shaping bill size and clinal trends across latitudinal/thermal gradients. Such patterns support the role of the bill as a thermal window and in thermal balance. It remains unknown whether bill size and thermal function are reversibly plastic. We raised Japanese quail in warm (30°C) or cold (15°C) environments and then at a common intermediate temperature. We predicted that birds raised in cold temperatures would develop smaller bills than warm-reared individuals, and that regulation of blood flow to the bill in response to changing temperatures would parallel the bill's role in thermal balance. Cold-reared birds developed shorter bills, although bill size exhibited 'catch-up' growth once adults were placed at a common temperature. Despite having lived in a common thermal environment as adults, individuals that were initially reared in the warmth had higher bill surface temperatures than cold-reared individuals, particularly under cold conditions. This suggests that blood vessel density and/or the control over blood flow in the bill retained a memory of early thermal ontogeny. We conclude that post-hatch temperature reversibly affects adult bill morphology but irreversibly influences the thermal physiological role of bills and may play an underappreciated role in avian energetics.

摘要

在不同的分类群中,早期的饲养环境会导致成年形态和生理上的变异。例如,在鸟类中,环境温度在塑造喙的大小和沿纬度/温度梯度的渐变趋势方面起着关键作用。这些模式支持喙作为热窗和热平衡的作用。目前还不清楚喙的大小和热功能是否具有可逆的可塑性。我们将日本鹌鹑饲养在温暖(30°C)或寒冷(15°C)的环境中,然后再放在一个常见的中间温度环境中。我们预测,在寒冷环境中饲养的鸟类的喙会比温暖环境中饲养的个体小,而对喙血流量的调节以适应温度变化的情况将与喙在热平衡中的作用相平行。寒冷环境中饲养的鸟类的喙会更短,尽管喙的大小在成年后被放置在一个共同的温度下会出现“追赶”生长。尽管成年后生活在一个共同的热环境中,但那些最初在温暖环境中饲养的个体的喙表面温度比在寒冷环境中饲养的个体高,尤其是在寒冷条件下。这表明,血管密度和/或喙内血流的控制保留了早期热发育的记忆。我们得出结论,孵化后的温度会可逆地影响成年鸟喙的形态,但会不可逆转地影响喙的热生理作用,并可能在鸟类的能量学中扮演被低估的角色。

相似文献

1
Post-hatch heat warms adult beaks: irreversible physiological plasticity in Japanese quail.
Proc Biol Sci. 2013 Jul 24;280(1767):20131436. doi: 10.1098/rspb.2013.1436. Print 2013 Sep 22.
2
The evolution of the avian bill as a thermoregulatory organ.
Biol Rev Camb Philos Soc. 2017 Aug;92(3):1630-1656. doi: 10.1111/brv.12299. Epub 2016 Oct 7.
3
Heat loss may explain bill size differences between birds occupying different habitats.
PLoS One. 2012;7(7):e40933. doi: 10.1371/journal.pone.0040933. Epub 2012 Jul 25.
5
Huffin' and puffin: seabirds use large bills to dissipate heat from energetically demanding flight.
J Exp Biol. 2019 Nov 8;222(Pt 21):jeb212563. doi: 10.1242/jeb.212563.
7
Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans?
PLoS One. 2016 May 18;11(5):e0154768. doi: 10.1371/journal.pone.0154768. eCollection 2016.
9
Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds.
Evolution. 2017 Aug;71(8):2120-2129. doi: 10.1111/evo.13274. Epub 2017 Jul 12.
10
Thermoregulatory consequences of growing up during a heatwave or a cold snap in Japanese quail.
J Exp Biol. 2024 Jan 15;227(2). doi: 10.1242/jeb.246876. Epub 2024 Jan 25.

引用本文的文献

1
Postnatal development in the cold render bird mitochondria more susceptible to heat stress.
Proc Biol Sci. 2025 Jun;292(2049):20251027. doi: 10.1098/rspb.2025.1027. Epub 2025 Jun 18.
3
Shrinking body size under climate warming is not associated with selection for smaller individuals in a migratory bird.
J Anim Ecol. 2025 May;94(5):958-970. doi: 10.1111/1365-2656.70027. Epub 2025 Apr 2.
4
A prenatal acoustic signal of heat reduces a biomarker of chronic stress at adulthood across seasons.
Front Physiol. 2024 Mar 29;15:1348993. doi: 10.3389/fphys.2024.1348993. eCollection 2024.
5
Spatial variation in avian bill size is associated with temperature extremes in a major radiation of Australian passerines.
Proc Biol Sci. 2024 Jan 31;291(2015):20232480. doi: 10.1098/rspb.2023.2480. Epub 2024 Jan 24.
6
Thermoregulatory consequences of growing up during a heatwave or a cold snap in Japanese quail.
J Exp Biol. 2024 Jan 15;227(2). doi: 10.1242/jeb.246876. Epub 2024 Jan 25.
9
Thermal adaptation best explains Bergmann's and Allen's Rules across ecologically diverse shorebirds.
Nat Commun. 2022 Aug 11;13(1):4727. doi: 10.1038/s41467-022-32108-3.

本文引用的文献

1
Catch-up growth in Japanese quail (Coturnix Japonica): relationships with food intake, metabolic rate and sex.
J Comp Physiol B. 2013 Aug;183(6):821-31. doi: 10.1007/s00360-013-0751-6. Epub 2013 Mar 28.
2
Seasonal dimorphism in the horny bills of sparrows.
Ecol Evol. 2013 Feb;3(2):389-98. doi: 10.1002/ece3.474. Epub 2013 Jan 11.
3
The influence of the California marine layer on bill size in a generalist songbird.
Evolution. 2012 Dec;66(12):3825-35. doi: 10.1111/j.1558-5646.2012.01726.x. Epub 2012 Jul 27.
4
Heat loss may explain bill size differences between birds occupying different habitats.
PLoS One. 2012;7(7):e40933. doi: 10.1371/journal.pone.0040933. Epub 2012 Jul 25.
5
Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon).
Proc Biol Sci. 2012 Jul 22;279(1739):2891-8. doi: 10.1098/rspb.2012.0443. Epub 2012 Mar 28.
6
Exercise mitigates the stunting effect of cold temperature on limb elongation in mice by increasing solute delivery to the growth plate.
J Appl Physiol (1985). 2010 Dec;109(6):1869-79. doi: 10.1152/japplphysiol.01022.2010. Epub 2010 Oct 7.
8
Morphological plasticity reduces the effect of poor developmental conditions on fledging age in mourning doves.
Proc Biol Sci. 2010 Jun 7;277(1688):1659-65. doi: 10.1098/rspb.2010.0022. Epub 2010 Feb 3.
9
Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.
Science. 2009 Jul 24;325(5939):468-70. doi: 10.1126/science.1175553.
10
Temperature regulates limb length in homeotherms by directly modulating cartilage growth.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19348-53. doi: 10.1073/pnas.0803319105. Epub 2008 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验