Suppr超能文献

超越 2×2 contingency 表:涉及 m 个诊断类别和 n 个诊断测试类别的各种场景中熵和互信息的入门介绍。

Beyond the 2×2 -contingency table: a primer on entropies and mutual information in various scenarios involving m diagnostic categories and n categories of diagnostic tests.

机构信息

Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, A-8010 Graz, Austria.

出版信息

Clin Chim Acta. 2013 Oct 21;425:97-103. doi: 10.1016/j.cca.2013.07.011. Epub 2013 Jul 22.

Abstract

BACKGROUND

Usual evaluation tools for diagnostic tests such as, sensitivity/specificity and ROC analyses, are designed for the discrimination between two diagnostic categories, using dichotomous test results. Information theoretical quantities such as mutual information allow in depth-analysis of more complex discrimination problems, including continuous test results, but are rarely used in clinical chemistry. This paper provides a primer on useful information theoretical concepts with a strong focus on typical diagnostic scenarios.

METHODS AND RESULTS

Information theoretical concepts are shortly explained. Mathematica CDF documents are provided which compute entropies and mutual information as function of pretest probabilities and the distribution of test results among the categories, and allow interactive exploration of the behavior of these quantities in comparison with more conventional diagnostic measures. Using data from a previously published study, the application of information theory to practical diagnostic problems involving up to 4×4 -contingency tables is demonstrated.

CONCLUSIONS

Information theoretical concepts are particularly useful for diagnostic problems requiring more than the usual binary classification. Quantitative test results can be properly analyzed, and in contrast to popular concepts such as ROC analysis, the effects of variations of pre-test probabilities of the diagnostic categories can be explicitly taken into account.

摘要

背景

常用的诊断测试评估工具,如敏感性/特异性和 ROC 分析,是为了区分两种诊断类别而设计的,使用二分类测试结果。信息论的信息量,如互信息,可以深入分析更复杂的判别问题,包括连续的测试结果,但在临床化学中很少使用。本文提供了一个有用的信息论概念入门,重点是典型的诊断场景。

方法和结果

简要解释了信息论概念。提供了 Mathematica CDF 文档,这些文档可以计算熵和互信息作为预测试概率和测试结果在类别之间的分布的函数,并允许交互式探索这些数量与更传统的诊断措施相比的行为。使用之前发表的一项研究的数据,演示了信息论在涉及多达 4×4 列联表的实际诊断问题中的应用。

结论

信息论概念对于需要超过通常的二进制分类的诊断问题特别有用。可以对定量测试结果进行适当的分析,并且与 ROC 分析等流行概念相比,可以明确考虑诊断类别的预测试概率变化的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验