Suppr超能文献

磁铁矿中绝缘子-金属转变的速度限制。

Speed limit of the insulator-metal transition in magnetite.

机构信息

1] Stanford Institute for Energy and Materials Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA [2].

出版信息

Nat Mater. 2013 Oct;12(10):882-6. doi: 10.1038/nmat3718. Epub 2013 Jul 28.

Abstract

As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.

摘要

作为已知最古老的磁性材料,磁铁矿 (Fe3O4) 数千年来一直令人类着迷。作为第一个显示出电导率和波动/局域电子序之间关系的氧化物,磁铁矿是理解一般相关氧化物的模型体系。然而,绝缘体-金属(或 Verwey)转变的确切机制长期以来一直难以捉摸。最近,被称为三聚体的三个铁位晶格畸变被确定为低温绝缘电子有序相的特征构建块。在这里,我们使用泵浦探针 X 射线衍射和光反射率技术研究了 Verwey 转变,并展示了三聚体如何在绝缘-金属转变中变得可移动。我们发现这是一个分两步的过程。在最初的 300 fs 破坏单个三聚体之后,相分离发生在 1.5±0.2 ps 的时间尺度上,产生残余的绝缘和金属区域。这项工作为未来氧化物电子学中的开关速度设定了限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验