Hennecke Martin, Schick Daniel, Sidiropoulos Themistoklis P H, Lin Jun-Xiao, Guo Zongxia, Malinowski Grégory, Mattern Maximilian, Ehrentraut Lutz, Schmidbauer Martin, Schnuerer Matthias, von Korff Schmising Clemens, Mangin Stéphane, Hehn Michel, Eisebitt Stefan
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Germany.
Université de Lorraine, CNRS, Institut Jean Lamour, Nancy, France.
Nat Commun. 2025 Sep 5;16(1):8233. doi: 10.1038/s41467-025-63571-3.
Light-induced magnetisation switching is one of the most intriguing and promising areas where an ultrafast phenomenon can be utilised in technological applications. So far, experiment and theory have considered the origin of all-optical helicity-independent magnetisation switching (AO-HIS) in individual magnetic films only as a microscopically local, thermally-driven process of angular momentum transfer between different subsystems. Here, we demonstrate that this local picture is insufficient and that AO-HIS must also be regarded as a spatially inhomogeneous process along the depth within a few-nanometre thin magnetic layer. Two regions of opposite magnetisation directions are observed, separated by a highly mobile boundary, which propagates along the depth of a 9.4 nm thin GdCo alloy. The dynamics of this transient boundary determines the final magnetisation state as well as the speed of AO-HIS throughout the entire magnetic layer. The ability to understand the influence of nanoscale and transient inhomogeneities on ultrafast switching phenomena and more generally on phase transitions will open new routes for material design and excitation scenarios in future devices for transferring and storing information.
光致磁化翻转是最具吸引力和前景的领域之一,在该领域中,超快现象可应用于技术领域。到目前为止,实验和理论仅将单个磁性薄膜中全光螺旋度无关磁化翻转(AO-HIS)的起源视为不同子系统之间角动量转移的微观局部热驱动过程。在此,我们证明这种局部图像是不充分的,AO-HIS还必须被视为沿几纳米厚磁性层深度方向的空间非均匀过程。观察到两个磁化方向相反的区域,由一个高度可移动的边界分隔,该边界沿9.4纳米厚的GdCo合金深度传播。这个瞬态边界的动力学决定了整个磁性层的最终磁化状态以及AO-HIS的速度。理解纳米级和瞬态不均匀性对超快开关现象以及更普遍地对相变的影响,将为未来用于传输和存储信息的设备中的材料设计和激发方案开辟新途径。