Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA.
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA.
Sci Adv. 2023 Jun 9;9(23):eadf8220. doi: 10.1126/sciadv.adf8220.
Understanding the driving mechanisms behind metal-insulator transitions (MITs) is a critical step toward controlling material's properties. Since the proposal of charge order-induced MIT in magnetite FeO in 1939 by Verwey, the nature of the charge order and its role in the transition have remained elusive. Recently, a trimeron order was found in the low-temperature structure of FeO; however, the expected transition entropy change in forming trimeron is greater than the observed value, which arises a reexamination of the ground state in the high-temperature phase. Here, we use electron diffraction to unveil that a nematic charge order on particular Fe sites emerges in the high-temperature structure of bulk FeO and that, upon cooling, a competitive intertwining of charge and lattice orders arouses the Verwey transition. Our findings discover an unconventional type of electronic nematicity in correlated materials and offer innovative insights into the transition mechanism in FeO via the electron-phonon coupling.
理解金属-绝缘体转变(MIT)背后的驱动机制是控制材料性质的关键步骤。自 1939 年 Verwey 提出磁铁矿 FeO 中的电荷有序诱导 MIT 以来,电荷有序的性质及其在转变中的作用一直难以捉摸。最近,在 FeO 的低温结构中发现了三聚体有序;然而,形成三聚体的预期转变熵变化大于观察到的值,这引发了对高温相基态的重新审视。在这里,我们使用电子衍射揭示出,在块状 FeO 的高温结构中,特定 Fe 位上出现了向列电荷有序,并且在冷却时,电荷和晶格有序的竞争交织引起了 Verwey 转变。我们的发现揭示了关联材料中一种非常规类型的电子向列性,并通过电子-声子耦合为 FeO 的转变机制提供了新的见解。