Suppr超能文献

微骨折术治疗距骨骨软骨缺损时,孔几何形状无影响。

No effect of hole geometry in microfracture for talar osteochondral defects.

机构信息

Department of Orthopedic Surgery, Orthopedic Research Center Amsterdam, Academic Medical Center, G4-262 Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,

出版信息

Clin Orthop Relat Res. 2013 Nov;471(11):3653-62. doi: 10.1007/s11999-013-3189-y. Epub 2013 Jul 27.

Abstract

BACKGROUND

Débridement and bone marrow stimulation is an effective treatment option for patients with talar osteochondral defects. However, whether surgical factors affect the success of microfracture treatment of talar osteochondral defects is not well characterized.

QUESTIONS/PURPOSES: We hypothesized (1) holes that reach deeper into the bone marrow-filled trabecular bone allow for more hyaline-like repair; and (2) a larger number of holes with a smaller diameter result in more solid integration of the repair tissue, less need for new bone formation, and higher fill of the defect.

METHODS

Talar osteochondral defects that were 6 mm in diameter were drilled bilaterally in 16 goats (32 samples). In eight goats, one defect was treated by drilling six 0.45-mm diameter holes in the defect 2 mm deep; in the remaining eight goats, six 0.45-mm diameter holes were punctured to a depth of 4 mm. All contralateral defects were treated with three 1.1-mm diameter holes 3 mm deep, mimicking the clinical situation, as internal controls. After 24 weeks, histologic analyses were performed using Masson-Goldner/Safranin-O sections scored using a modified O'Driscoll histologic score (scale, 0-22) and analyzed for osteoid deposition. Before histology, repair tissue quality and defect fill were assessed by calculating the mean attenuation repair/healthy cartilage ratio on Equilibrium Partitioning of an Ionic Contrast agent (EPIC) micro-CT (μCT) scans. Differences were analyzed by paired comparison and Mann-Whitney U tests.

RESULTS

Significant differences were not present between the 2-mm and 4-mm deep hole groups for the median O'Driscoll score (p = 0.31) and the median of the μCT attenuation repair/healthy cartilage ratios (p = 0.61), nor between the 0.45-mm diameter and the 1.1-mm diameter holes in defect fill (p = 0.33), osteoid (p = 0.89), or structural integrity (p = 0.80).

CONCLUSIONS

The results indicate that the geometry of microfracture holes does not influence cartilage healing in the caprine talus.

CLINICAL RELEVANCE

Bone marrow stimulation technique does not appear to be improved by changing the depth or diameter of the holes.

摘要

背景

清创和骨髓刺激是治疗距骨骨软骨缺损患者的有效治疗选择。然而,手术因素是否会影响微骨折治疗距骨骨软骨缺损的效果尚不清楚。

问题/目的:我们假设(1)深入骨髓填充的小梁骨的孔允许更类似透明软骨的修复;(2)更多数量的小孔且直径较小会导致修复组织更牢固地整合,减少新骨形成的需求,并更高地填充缺损。

方法

在 16 只山羊(32 个样本)的距骨上钻取直径为 6mm 的骨软骨缺损。在 8 只山羊中,一侧的缺损用 6 个直径为 0.45mm 的孔在 2mm 深处进行处理;在其余 8 只山羊中,用 6 个直径为 0.45mm 的孔以 4mm 的深度进行穿刺。所有对侧的缺损均用 3 个直径为 1.1mm、深 3mm 的孔进行处理,模仿临床情况,作为内部对照。24 周后,通过改良 O'Driscoll 组织学评分(评分范围 0-22)对 Masson-Goldner/Safranin-O 切片进行组织学分析,并对类骨质沉积进行分析。在组织学分析之前,通过计算 EPIC 微 CT(μCT)扫描中平衡离子对比剂的平均衰减修复/健康软骨比值,评估修复组织质量和缺损填充。通过配对比较和 Mann-Whitney U 检验分析差异。

结果

2mm 和 4mm 深孔组的中位数 O'Driscoll 评分(p = 0.31)和 μCT 衰减修复/健康软骨比值中位数(p = 0.61)差异无统计学意义,0.45mm 直径孔和 1.1mm 直径孔之间的缺损填充(p = 0.33)、类骨质(p = 0.89)或结构完整性(p = 0.80)差异也无统计学意义。

结论

结果表明,微骨折孔的几何形状不会影响山羊距骨的软骨愈合。

临床相关性

骨髓刺激技术似乎不会因改变孔的深度或直径而得到改善。

相似文献

1
No effect of hole geometry in microfracture for talar osteochondral defects.
Clin Orthop Relat Res. 2013 Nov;471(11):3653-62. doi: 10.1007/s11999-013-3189-y. Epub 2013 Jul 27.
2
Effect of Bone Morphogenetic Protein-2 Combined With Microfracture for Osteochondral Defect of the Talus in a Rabbit Model.
Am J Sports Med. 2023 May;51(6):1560-1570. doi: 10.1177/03635465231162316. Epub 2023 Apr 4.
4
Small subchondral drill holes improve marrow stimulation of articular cartilage defects.
Am J Sports Med. 2014 Nov;42(11):2741-50. doi: 10.1177/0363546514547029. Epub 2014 Aug 28.
6
Arthroscopic microfracture vs. arthroscopic autologous matrix-induced chondrogenesis for the treatment of articular cartilage defects of the talus.
Knee Surg Sports Traumatol Arthrosc. 2019 Sep;27(9):2731-2736. doi: 10.1007/s00167-018-5278-7. Epub 2018 Nov 3.
7
A Novel Strategy to Enhance Microfracture Treatment With Stromal Cell-Derived Factor-1 in a Rat Model.
Front Cell Dev Biol. 2021 Feb 4;8:595932. doi: 10.3389/fcell.2020.595932. eCollection 2020.
10

引用本文的文献

1
Clinical and Magnetic Resonance Imaging Outcomes After Human Cord Blood-Derived Mesenchymal Stem Cell Implantation for Chondral Defects of the Knee.
Orthop J Sports Med. 2023 Apr 24;11(4):23259671231158391. doi: 10.1177/23259671231158391. eCollection 2023 Apr.
2
Outcomes of Bone Marrow Stimulation for Secondary Osteochondral Lesions of the Talus Equal Outcomes for Primary Lesions.
Cartilage. 2021 Dec;13(1_suppl):1429S-1437S. doi: 10.1177/19476035211025816. Epub 2021 Jun 24.
4
Subchondral drilling for articular cartilage repair: a systematic review of translational research.
Dis Model Mech. 2018 Jun 19;11(6):dmm034280. doi: 10.1242/dmm.034280.
5
The Subchondral Bone Is Affected by Bone Marrow Stimulation: A Systematic Review of Preclinical Animal Studies.
Cartilage. 2019 Jan;10(1):70-81. doi: 10.1177/1947603517711220. Epub 2017 Jun 2.
6
Osteochondral lesions of the talus in the athlete: up to date review.
Curr Rev Musculoskelet Med. 2017 Mar;10(1):131-140. doi: 10.1007/s12178-017-9393-8.
7
The biology and clinical evidence of microfracture in hip preservation surgery.
J Hip Preserv Surg. 2016 Feb 26;3(2):108-23. doi: 10.1093/jhps/hnw007. eCollection 2016 Jul.
8
What quantitative mechanical loading stimulates in vitro cultivation best?
J Exp Orthop. 2015 Dec;2(1):15. doi: 10.1186/s40634-015-0029-x. Epub 2015 Jun 19.
9
[Arthroscopic treatment of chondral lesions of the ankle joint. Evidence-based therapy].
Unfallchirurg. 2016 Feb;119(2):100-8. doi: 10.1007/s00113-015-0136-2.
10
Microcomputed tomography: approaches and applications in bioengineering.
Stem Cell Res Ther. 2014 Dec 29;5(6):144. doi: 10.1186/scrt534.

本文引用的文献

2
Osteochondral defects of the talus: a novel animal model in the goat.
Tissue Eng Part C Methods. 2013 Jun;19(6):449-57. doi: 10.1089/ten.TEC.2012.0401. Epub 2013 Jan 4.
3
Is technique performance a prognostic factor in bone marrow stimulation of the talus?
J Foot Ankle Surg. 2012 Nov-Dec;51(6):777-82. doi: 10.1053/j.jfas.2012.08.005. Epub 2012 Sep 21.
4
Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months.
Am J Sports Med. 2012 Apr;40(4):828-36. doi: 10.1177/0363546511430376. Epub 2012 Jan 5.
5
Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair.
J Orthop Res. 2011 Aug;29(8):1178-84. doi: 10.1002/jor.21386. Epub 2011 Feb 24.
6
Arterial anatomy of the talus: a cadaver and gadolinium-enhanced MRI study.
Foot Ankle Int. 2010 Nov;31(11):987-93. doi: 10.3113/FAI.2010.0987.
7
Interventions for treating osteochondral defects of the talus in adults.
Cochrane Database Syst Rev. 2010 Aug 4(8):CD008104. doi: 10.1002/14651858.CD008104.pub2.
8
Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up.
Knee Surg Sports Traumatol Arthrosc. 2010 May;18(5):656-63. doi: 10.1007/s00167-009-1036-1. Epub 2010 Feb 4.
9
Treatment of osteochondral lesions of the talus: a systematic review.
Knee Surg Sports Traumatol Arthrosc. 2010 Feb;18(2):238-46. doi: 10.1007/s00167-009-0942-6. Epub 2009 Oct 27.
10
Animal models for cartilage regeneration and repair.
Tissue Eng Part B Rev. 2010 Feb;16(1):105-15. doi: 10.1089/ten.TEB.2009.0452.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验