Suppr超能文献

特发性肌张力障碍的遗传学研究:已知、未知与未来

Genetics of dystonia: what's known? What's new? What's next?

机构信息

Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.

出版信息

Mov Disord. 2013 Jun 15;28(7):899-905. doi: 10.1002/mds.25536.

Abstract

Although all forms of dystonia share the core clinical features of involuntary dystonic dyskinesia, there is not only marked phenotypic but also etiologic heterogeneity. Isolated dystonia can be caused by mutations in TOR1A (DYT1), TUBB4 (DYT4), THAP1 (DYT6), CIZ1 (DYT23), ANO3 (DYT24), and GNAL (DYT25). Combined dystonias (with parkinsonism or myoclonus) are further subdivided into persistent (TAF1 [DYT3], GCHI [DYT5], SGCE [DYT11], ATP1A3 [DYT12]), PRKRA (DYT16), and paroxysmal (MR-1 [DYT8], PRRT2 [DYT10], SLC2A1 [DYT18]. With the advent of next-generation sequencing, an unprecedented number of new dystonia genes have recently been described, including 4 in the past 12 months. Despite the need for independent confirmation, these recent findings raise 2 important questions regarding (1) the role of genetics in dystonia overall and (2) the role of different molecular mechanisms in dystonia pathogenesis. The genetic contribution to dystonia represents a continuum ranging from genetic susceptibility factors of small effect to causative genes with markedly reduced penetrance to those with full penetrance. Equally diverse and complex are the pathways and neuronal function(s) putatively involved in dystonia pathogenesis including dopamine signaling, intracellular transport, cytoskeletal dynamics, transcriptional regulation, cell-cycle control, ion channel function, energy metabolism, signal transduction, and detoxification mechanisms. In the next decade of dystonia research, we expect to see the discovery of additional dystonia genes and susceptibility factors. In this context, it will be of great interest to explore whether the diverse cellular functions of the known dystonia proteins may be linked to shared pathways and thus complete the complex puzzle of dystonia pathogenesis. © 2013 Movement Disorder Society.

摘要

虽然所有形式的肌张力障碍都具有不自主的肌张力障碍运动障碍这一核心临床特征,但不仅表型显著,而且病因也存在异质性。孤立性肌张力障碍可由 TOR1A(DYT1)、TUBB4(DYT4)、THAP1(DYT6)、CIZ1(DYT23)、ANO3(DYT24)和 GNAL(DYT25)基因突变引起。合并性肌张力障碍(伴帕金森病或肌阵挛)进一步细分为持续性(TAF1 [DYT3]、GCHI [DYT5]、SGCE [DYT11]、ATP1A3 [DYT12])、PRKRA(DYT16)和发作性(MR-1 [DYT8]、PRRT2 [DYT10]、SLC2A1 [DYT18])。随着下一代测序技术的出现,最近描述了数量空前的新的肌张力障碍基因,包括过去 12 个月中的 4 个。尽管需要独立确认,但这些最近的发现提出了两个重要问题,即(1)遗传学在肌张力障碍中的作用,以及(2)不同分子机制在肌张力障碍发病机制中的作用。遗传因素在肌张力障碍中的贡献是一个连续体,范围从遗传易感性小的因素到显著降低外显率的致病基因,再到完全外显率的致病基因。同样多种多样和复杂的是发病机制中潜在涉及的途径和神经元功能,包括多巴胺信号、细胞内运输、细胞骨架动力学、转录调控、细胞周期控制、离子通道功能、能量代谢、信号转导和解毒机制。在未来十年的肌张力障碍研究中,我们预计会发现更多的肌张力障碍基因和易感性因素。在这种情况下,探索已知肌张力障碍蛋白的不同细胞功能是否与共享途径相关,从而完成肌张力障碍发病机制的复杂拼图,将具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验