Department of Chemistry, University of Iowa, Iowa, IA, USA.
IUBMB Life. 2013 Sep;65(9):759-68. doi: 10.1002/iub.1195. Epub 2013 Jul 29.
3-Nitropropionate (3-NPA) is a nitro aliphatic compound found in numerous plants and fungi. The nitro compound exists in equilibrium with its conjugate base, propionate 3-nitronate (P3N) and has a pKa approaching the physiological range of 9.1. Since 1920, more than 30 species of plant and fungi have been identified as producing 3-NPA as a means of defense from herbivores. Glycoside products containing moieties of 3-NPA found in parts of the plants most accessible to herbivores can be easily hydrolyzed to free 3-NPA by bacterial enzymes in the gut of animals. In addition to providing a defense mechanism, the nitro compound is an intermediate in the nitrification process of leguminous plants. The synthesis of 3-NPA in these plants and fungi is poorly understood. P3N, which readily forms from 3-NPA at physiological pH, is a potent inhibitor of the key enzyme succinate dehydrogenase in the Krebs cycle and electron transport chain. Inhibition of succinate dehydrogenase in humans and livestock causes neurotoxicity and in some cases death. Several enzymes catalyze the oxidation of 3-NPA or P3N; all contain a noncovalently bound flavin cofactor and are found in the organisms that produce 3-NPA. With k(cat)/K(m) values of >10(6) M(-1) s(-1), nitronate monooxygenases can quickly and efficiently oxidize P3N to malonic semialdehyde as a means of protecting the organism from killing itself. Although it was discovered almost a century ago, the biochemistry and physiological role of 3-NPA/P3N are just emerging.
3-硝基丙酸(3-NPA)是一种存在于许多植物和真菌中的硝基脂肪族化合物。硝基化合物与它的共轭碱丙酸盐 3-硝酮(P3N)处于平衡状态,pKa 接近 9.1 的生理范围。自 1920 年以来,已经有 30 多种植物和真菌被鉴定为产生 3-NPA,作为抵御食草动物的防御手段。在植物中最容易被食草动物接触到的部分中发现的含有 3-NPA 部分的糖苷产物可以很容易地被动物肠道中的细菌酶水解为游离的 3-NPA。除了提供防御机制外,硝基化合物还是豆科植物硝化过程的中间产物。这些植物和真菌中 3-NPA 的合成机制还不太清楚。P3N 在生理 pH 下很容易从 3-NPA 形成,是三羧酸循环和电子传递链中关键酶琥珀酸脱氢酶的有效抑制剂。琥珀酸脱氢酶在人和牲畜中的抑制会导致神经毒性,在某些情况下会导致死亡。几种酶催化 3-NPA 或 P3N 的氧化;所有这些酶都含有非共价结合的黄素辅因子,并且存在于产生 3-NPA 的生物体中。由于具有 >10(6) M(-1) s(-1)的 k(cat)/K(m) 值,硝酮单加氧酶可以快速有效地将 P3N 氧化为丙二醛半醛,作为保护生物体免受自身杀伤的一种手段。尽管它在一个世纪前就被发现了,但 3-NPA/P3N 的生物化学和生理作用才刚刚开始显现。