Department of Microbiology & Plants and Microbes Biotechnology, Biology Faculty, Yerevan State University , Yerevan , Armenia.
Crit Rev Biotechnol. 2015 Mar;35(1):103-13. doi: 10.3109/07388551.2013.809047. Epub 2013 Jul 29.
H2 has a great potential as an ecologically-clean, renewable and capable fuel. It can be mainly produced via hydrogenases (Hyd) by different bacteria, especially Escherichia coli and Rhodobacter sphaeroides. The operation direction and activity of multiple Hyd enzymes in E. coli during mixed-acid fermentation might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating the activity of different Hyd enzymes is an effective way to enhance H2 production by E. coli in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production. Mixed carbon (sugar and glycerol) utilization studies enlarge the kind of organic wastes used in biotechnology. During photo-fermentation under limited nitrogen conditions, H2 production by Rh. sphaeroides is observed when carbon and nitrogen sources are supplemented. The relationship of H2 production with H(+) transport across the membrane and membrane-associated ATPase activity is shown. On the other hand, combination of carbon sources (succinate, malate) with different nitrogen sources (yeast extract, glutamate, glycine) as well as different metal (Fe, Ni, Mg) ions might regulate H2 production. All these can enhance H2 production yield by Rh. sphaeroides in biotechnology Finally, two of these bacteria might be combined to develop and consequently to optimize two stages of H2 production biotechnology with high efficiency transformation of different organic sources.
H2 作为一种生态清洁、可再生且高效的燃料具有巨大的潜力。它主要可以通过不同的细菌(尤其是大肠杆菌和球形红杆菌)中的氢化酶(Hyd)产生。在混合酸发酵过程中,大肠杆菌中多种 Hyd 酶的操作方向和活性可能决定了 H2 的产生;有人提出 Hyd 酶之间存在代谢交叉对话。操纵不同 Hyd 酶的活性是提高大肠杆菌生物技术中 H2 产量的有效方法。此外,利用甘油作为发酵过程中的原料生产 H2 是一种新的方法。混合碳(糖和甘油)利用研究扩大了生物技术中使用的有机废物种类。在有限氮条件下的光发酵过程中,当补充碳源和氮源时,观察到球形红杆菌产生 H2。结果表明,H2 的产生与跨膜 H(+)运输和膜相关 ATP 酶活性有关。另一方面,将碳源(琥珀酸盐、苹果酸盐)与不同的氮源(酵母提取物、谷氨酸盐、甘氨酸)以及不同的金属(Fe、Ni、Mg)离子结合使用可能会调节 H2 的产生。所有这些都可以提高 Rh. sphaeroides 在生物技术中的 H2 产量。最后,可以将这两种细菌结合起来,开发并优化 H2 生产生物技术的两个阶段,从而实现不同有机源的高效转化。