Suppr超能文献

不同的突触机制在灵长类动物视网膜中形成平行的S-ON和S-OFF颜色拮抗通路。

Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina.

作者信息

Dacey Dennis M, Crook Joanna D, Packer Orin S

机构信息

Department of Biological Structure and The National Primate Research Center, University of Washington, Seattle, Washington.

出版信息

Vis Neurosci. 2014 Mar;31(2):139-51. doi: 10.1017/S0952523813000230. Epub 2013 Jul 29.

Abstract

Anatomical and physiological approaches are beginning to reveal the synaptic origins of parallel ON- and OFF-pathway retinal circuits for the transmission of short (S-) wavelength sensitive cone signals in the primate retina. Anatomical data suggest that synaptic output from S-cones is largely segregated; central elements of synaptic triads arise almost exclusively from the "blue-cone" bipolar cell, a presumed ON bipolar, whereas triad-associated contacts derive primarily from the "flat" midget bipolar cell, a hyperpolarizing, OFF bipolar. Similarly, horizontal cell connectivity is also segregated, with only the H2 cell-type receiving numerous contacts from S-cones. Negative feedback from long (L-) and middle (M-) wavelength sensitive cones via the H2 horizontal cells elicits an antagonistic surround in S-cones demonstrating that S versus L + M or "blue-yellow" opponency is first established in the S-cone. However, the S-cone output utilizes distinct synaptic mechanisms to create color opponency at the ganglion cell level. The blue-cone bipolar cell is presynaptic to the small bistratified, "blue-ON" ganglion cell. S versus L + M cone opponency arises postsynaptically by converging S-ON and LM-OFF excitatory bipolar inputs to the ganglion cell's bistratified dendritic tree. The common L + M cone surrounds of the parallel S-ON and LM-OFF cone bipolar inputs appear to cancel resulting in "blue-yellow" antagonism without center-surround spatial opponency. By contrast, in midget ganglion cells, opponency arises by the differential weighting of cone inputs to the receptive field center versus surround. In the macula, the "private-line" connection from a midget ganglion cell to a single cone predicts that S versus L + M opponency is transmitted from the S-cone to the S-OFF midget bipolar and ganglion cell. Beyond the macula, OFF-midget ganglion cell dendritic trees enlarge and collect additional input from multiple L and M cones. Thus S-OFF opponency via the midget pathway would be expected to become more complex in the near retinal periphery as L and/or M and S cone inputs sum to the receptive field center. An important goal for further investigation will be to explore the hypothesis that distinct bistratified S-ON versus midget S-OFF retinal circuits are the substrates for human psychophysical detection mechanisms attributed to S-ON versus S-OFF perceptual channels.

摘要

解剖学和生理学方法开始揭示灵长类视网膜中用于短(S-)波长敏感视锥信号传输的平行ON和OFF通路视网膜回路的突触起源。解剖学数据表明,S视锥细胞的突触输出在很大程度上是分离的;三联体突触的中心成分几乎完全来自“蓝视锥”双极细胞,一种推测为ON双极细胞,而与三联体相关的突触主要来自“扁平”侏儒双极细胞,一种超极化的OFF双极细胞。同样,水平细胞的连接性也是分离的,只有H2细胞类型接收来自S视锥细胞的大量突触联系。长(L-)和中(M-)波长敏感视锥细胞通过H2水平细胞产生的负反馈在S视锥细胞中引发拮抗周边,这表明S与L + M或“蓝黄”拮抗首先在S视锥细胞中建立。然而,S视锥细胞的输出利用不同的突触机制在神经节细胞水平产生颜色拮抗。蓝视锥双极细胞是小双分层“蓝ON”神经节细胞的突触前细胞。S与L + M视锥细胞的拮抗在突触后通过将S-ON和LM-OFF兴奋性双极输入汇聚到神经节细胞的双分层树突上来产生。平行的S-ON和LM-OFF视锥双极输入的共同L + M视锥细胞周边似乎相互抵消,从而导致“蓝黄”拮抗而没有中心-周边空间拮抗。相比之下,在侏儒神经节细胞中,拮抗是通过视锥细胞输入到感受野中心与周边的差异加权产生的。在黄斑区,从侏儒神经节细胞到单个视锥细胞的“专线”连接预测S与L + M拮抗从S视锥细胞传递到S-OFF侏儒双极细胞和神经节细胞。在黄斑区之外,OFF-侏儒神经节细胞的树突扩大并从多个L和M视锥细胞收集额外的输入。因此,随着L和/或M以及S视锥细胞输入汇聚到感受野中心,通过侏儒通路的S-OFF拮抗在视网膜近周边区域预计会变得更加复杂。进一步研究的一个重要目标将是探索这样一个假设,即不同的双分层S-ON与侏儒S-OFF视网膜回路是归因于S-ON与S-OFF感知通道的人类心理物理学检测机制的基础。

相似文献

1
Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina.
Vis Neurosci. 2014 Mar;31(2):139-51. doi: 10.1017/S0952523813000230. Epub 2013 Jul 29.
2
Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
J Neurosci. 2019 Oct 2;39(40):7893-7909. doi: 10.1523/JNEUROSCI.0778-19.2019. Epub 2019 Aug 12.
5
A circuit motif for color in the human foveal retina.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2405138121. doi: 10.1073/pnas.2405138121. Epub 2024 Aug 27.
6
Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
J Neurosci. 2018 Feb 7;38(6):1520-1540. doi: 10.1523/JNEUROSCI.1688-17.2017. Epub 2018 Jan 5.
7
Circuitry for color coding in the primate retina.
Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):582-8. doi: 10.1073/pnas.93.2.582.
8
Primate retina: cell types, circuits and color opponency.
Prog Retin Eye Res. 1999 Nov;18(6):737-63. doi: 10.1016/s1350-9462(98)00013-5.
9
Amacrine cell contributions to red-green color opponency in central primate retina: a model study.
Vis Neurosci. 2007 Jul-Aug;24(4):535-47. doi: 10.1017/S0952523807070502.
10
L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina.
J Neurosci. 2004 Feb 4;24(5):1079-88. doi: 10.1523/JNEUROSCI.3828-03.2004.

引用本文的文献

1
Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan.
Research (Wash D C). 2024 Nov 21;7:0536. doi: 10.34133/research.0536. eCollection 2024.
2
A circuit motif for color in the human foveal retina.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2405138121. doi: 10.1073/pnas.2405138121. Epub 2024 Aug 27.
3
Dye coupling of horizontal cells in the primate retina.
Front Ophthalmol (Lausanne). 2023 Nov 16;3:1173706. doi: 10.3389/fopht.2023.1173706. eCollection 2023.
4
Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Noncardinal Color Directions.
J Neurosci. 2024 May 1;44(18):e1738232024. doi: 10.1523/JNEUROSCI.1738-23.2024.
5
Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell.
Vis Neurosci. 2023 May 23;40:E003. doi: 10.1017/S0952523823000019.
6
Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2300545120. doi: 10.1073/pnas.2300545120. Epub 2023 Apr 25.
8
Temporal dynamics of the neural representation of hue and luminance polarity.
Nat Commun. 2022 Feb 3;13(1):661. doi: 10.1038/s41467-022-28249-0.
9
Ganglion cells in larval zebrafish retina integrate inputs from multiple cone types.
J Neurophysiol. 2021 Oct 1;126(4):1440-1454. doi: 10.1152/jn.00082.2021. Epub 2021 Sep 22.

本文引用的文献

1
A non-canonical pathway for mammalian blue-green color vision.
Nat Neurosci. 2012 May 27;15(7):952-3. doi: 10.1038/nn.3127.
2
Lateral interactions in the outer retina.
Prog Retin Eye Res. 2012 Sep;31(5):407-41. doi: 10.1016/j.preteyeres.2012.04.003. Epub 2012 May 3.
3
Photoreceptor coupling mediated by connexin36 in the primate retina.
J Neurosci. 2012 Mar 28;32(13):4675-87. doi: 10.1523/JNEUROSCI.4749-11.2012.
5
Chromatic bipolar cell pathways in the mouse retina.
J Neurosci. 2011 Apr 27;31(17):6504-17. doi: 10.1523/JNEUROSCI.0616-11.2011.
6
Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys.
J Physiol. 2011 Jun 1;589(Pt 11):2795-812. doi: 10.1113/jphysiol.2010.194076. Epub 2011 Apr 11.
8
Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections.
Vis Neurosci. 2011 Jan;28(1):29-37. doi: 10.1017/S0952523810000374. Epub 2010 Dec 15.
9
Bipolar input to melanopsin containing ganglion cells in primate retina.
Vis Neurosci. 2011 Jan;28(1):39-50. doi: 10.1017/S095252381000026X. Epub 2010 Oct 18.
10
Functional connectivity in the retina at the resolution of photoreceptors.
Nature. 2010 Oct 7;467(7316):673-7. doi: 10.1038/nature09424.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验