Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
Biomaterials. 2013 Nov;34(33):8203-12. doi: 10.1016/j.biomaterials.2013.07.035. Epub 2013 Jul 27.
Bottom-up assembly of osteon-like structures into large tissue constructs represents a promising and practical strategy toward the formation of hierarchical cortical bone. Here, a unique two-step approach, i.e., the combination of electrospinning and twin screw extrusion (TSE) techniques was used to fabricate a microfilament/nanofiber shell-core scaffold that could precisely control the spatial distribution of different types of cells to form vascularized osteon-like structures. The scaffold contained a helical outer shell consisting of porous microfilament coils of polycaprolactone (PCL) and biphasic calcium phosphates (BCP) that wound around a hollow electrospun PCL nanofibrous tube (the core). The porous helical shell supported the formation of bone-like tissues, while the luminal surface of nanofibrous core enabled endothelialization to mimic the function of Haversian canal. Culture of mouse pre-osteoblasts (POBs, MC 3T3-E1) onto the coil shells revealed that coils with pitch sizes greater than 135 μm, in the presence of BCP, favored the proliferation and osteogenic differentiation of POBs. The luminal surface of PCL nanofibrous core supported the adhesion and spreading of mouse endothelial cells (ECs, MS-1) to form a continuous endothelial lining with the function similar to blood vessels. Taken together, the shell-core bi-layered scaffolds with porous, coil-like shell and nanofibrous tubular cores represent a new scaffolding technology base for the creation of osteon analogs.
将骨单位样结构自下而上组装成大型组织构建体代表了一种有前途且实用的策略,可用于形成分层皮质骨。在这里,采用了一种独特的两步法,即静电纺丝和双螺杆挤出(TSE)技术的结合,来制造一种微纤维/纳米纤维壳芯支架,可精确控制不同类型细胞的空间分布,以形成血管化的骨单位样结构。支架包含一个螺旋形外壳,由聚己内酯(PCL)和双相磷酸钙(BCP)的多孔微纤维线圈组成,这些线圈缠绕在中空的静电纺丝 PCL 纳米纤维管(核心)周围。多孔螺旋壳支持骨样组织的形成,而纳米纤维芯的内腔表面则能够内皮化,以模拟哈弗斯管的功能。将小鼠前成骨细胞(POB,MC 3T3-E1)培养在螺旋壳上,结果表明,在 BCP 存在的情况下,螺距大于 135μm 的线圈有利于 POB 的增殖和成骨分化。PCL 纳米纤维芯的内腔表面支持小鼠内皮细胞(EC,MS-1)的黏附和铺展,形成具有类似血管功能的连续内皮衬里。总之,具有多孔螺旋壳和纳米纤维管状芯的壳芯双层支架代表了一种新的支架技术基础,可用于创建骨单位类似物。