Xu Ningna, Ahuja Ekta Gayanji, Janning Petra, Mavrodi Dmitri Valeryevich, Thomashow Linda S, Blankenfeldt Wulf
Lehrstuhl für Biochemie, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1403-13. doi: 10.1107/S0907444913008354. Epub 2013 Jul 13.
Phenazines are redox-active secondary metabolites that many bacteria produce and secrete into the environment. They are broad-specificity antibiotics, but also act as virulence and survival factors in infectious diseases. Phenazines are derived from chorismic acid, but important details of their biosynthesis are still unclear. For example, three two-electron oxidations seem to be necessary in the final steps of the pathway, while only one oxidase, the FMN-dependent PhzG, is conserved in the phenazine-biosynthesis phz operon. Here, crystal structures of PhzG from Pseudomonas fluorescens 2-79 and from Burkholderia lata 383 in complex with excess FMN and with the phenazine-biosynthesis intermediates hexahydrophenazine-1,6-dicarboxylate and tetrahydrophenazine-1-carboxylate generated in situ are reported. Corroborated with biochemical data, these complexes demonstrate that PhzG is the terminal enzyme in phenazine biosynthesis and that its relaxed substrate specificity lets it participate in the generation of both phenazine-1,6-dicarboxylic acid (PDC) and phenazine-1-carboxylic acid (PCA). This suggests that competition between flavin-dependent oxidations through PhzG and spontaneous oxidative decarboxylations determines the ratio of PDC, PCA and unsubstituted phenazine as the products of phenazine biosynthesis. Further, the results indicate that PhzG synthesizes phenazines in their reduced form. These reduced molecules, and not the fully aromatized derivatives, are the likely end products in vivo, explaining why only one oxidase is required in the phenazine-biosynthesis pathway.
吩嗪是许多细菌产生并分泌到环境中的具有氧化还原活性的次生代谢产物。它们是具有广泛特异性的抗生素,但在传染病中也作为毒力和生存因子发挥作用。吩嗪由分支酸衍生而来,但其生物合成的重要细节仍不清楚。例如,在该途径的最后步骤中似乎需要三次双电子氧化,而在吩嗪生物合成的phz操纵子中仅保留一种氧化酶,即黄素单核苷酸依赖性的PhzG。本文报道了荧光假单胞菌2-79和宽叶伯克霍尔德菌383的PhzG与过量黄素单核苷酸以及与原位生成的吩嗪生物合成中间体六氢吩嗪-1,6-二羧酸和四氢吩嗪-1-羧酸形成的复合物的晶体结构。这些复合物与生化数据相互印证,表明PhzG是吩嗪生物合成中的末端酶,其宽松的底物特异性使其能够参与吩嗪-1,6-二羧酸(PDC)和吩嗪-1-羧酸(PCA)的生成。这表明通过PhzG的黄素依赖性氧化与自发氧化脱羧之间的竞争决定了作为吩嗪生物合成产物的PDC、PCA和未取代吩嗪的比例。此外,结果表明PhzG以还原形式合成吩嗪。这些还原态分子而非完全芳构化的衍生物可能是体内的最终产物,这解释了为什么吩嗪生物合成途径中仅需要一种氧化酶。