Suppr超能文献

DNA 结合金属蛋白的多重电化学

Multiplexed electrochemistry of DNA-bound metalloproteins.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Am Chem Soc. 2013 Aug 14;135(32):11869-78. doi: 10.1021/ja4041779. Epub 2013 Jul 30.

Abstract

Here we describe a multiplexed electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins containing redox cofactors, and multiplexing offers a means to probe different complex samples and substrates in parallel to elucidate this chemistry. Multiplexed analysis of endonuclease III (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, shows subtle differences in the electrochemical behavior as a function of DNA morphology. The peak splitting, signal broadness, sensitivity to π-stack perturbations, and kinetics were all characterized for the DNA-bound reduction of EndoIII on both closely and loosely packed DNA films. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction; closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. Multiplexing furthermore permits the comparison of the electrochemistry of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.

摘要

在这里,我们描述了一种用于含有 [4Fe-4S] 簇的 DNA 结合蛋白的多重电化学生物特征分析。DNA 修饰电极已成为研究含有氧化还原辅因子的 DNA 修复蛋白的氧化还原化学的重要工具,而多重分析则提供了一种同时探测不同复杂样品和底物的方法,以阐明这种化学性质。对含有 [4Fe-4S] 簇的 DNA 修复蛋白内切酶 III(EndoIII)的多重分析表明,其电化学行为在不同 DNA 形态下存在细微差异。对紧密和松散堆积的 DNA 薄膜上 EndoIII 的 DNA 结合还原的峰分裂、信号宽度、对 π-堆积扰动的敏感性和动力学进行了特征描述。DNA 结合的 EndoIII 具有两种不同的还原电子转移途径,一种是通过 DNA 碱基堆积,另一种是通过直接表面还原;在蛋白质表面可及性有限的紧密堆积 DNA 薄膜中,产生的电化学信号反映了 DNA 介导的电子转移。多重分析还允许比较 EndoIII 突变体的电化学性质,包括一组改变 [4Fe-4S] 簇周围静电的新突变体家族。尽管该突变体家族的中点电位几乎没有变化,但 DNA 介导的电子转移效率的明显变化。基于这些蛋白质的稳定性,通过圆二色性进行了检测,我们提出电子转移途径不仅可以通过去除芳香族残基来干扰,还可以通过改变簇附近的溶剂化来干扰。

相似文献

1
Multiplexed electrochemistry of DNA-bound metalloproteins.
J Am Chem Soc. 2013 Aug 14;135(32):11869-78. doi: 10.1021/ja4041779. Epub 2013 Jul 30.
2
DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters.
Biochemistry. 2005 Jun 14;44(23):8397-407. doi: 10.1021/bi047494n.
3
4
DNA-mediated signaling by proteins with 4Fe-4S clusters is necessary for genomic integrity.
J Am Chem Soc. 2014 Apr 30;136(17):6470-8. doi: 10.1021/ja501973c. Epub 2014 Apr 16.
5
Sulfur K-Edge XAS Studies of the Effect of DNA Binding on the [FeS] Site in EndoIII and MutY.
J Am Chem Soc. 2017 Aug 23;139(33):11434-11442. doi: 10.1021/jacs.7b03966. Epub 2017 Aug 10.
6
Reversible inactivation of E. coli endonuclease III via modification of its [4Fe-4S] cluster by nitric oxide.
DNA Repair (Amst). 2003 Jul 16;2(7):809-17. doi: 10.1016/s1568-7864(03)00065-x.
7
Nitric Oxide Modulates Endonuclease III Redox Activity by a 800 mV Negative Shift upon [FeS] Cluster Nitrosylation.
J Am Chem Soc. 2018 Sep 19;140(37):11800-11810. doi: 10.1021/jacs.8b07362. Epub 2018 Sep 6.
9
UV radiation effects on a DNA repair enzyme: conversion of a [4Fe-4S](2+) cluster into a [2Fe-2S] (2+).
Radiat Environ Biophys. 2015 Mar;54(1):111-121. doi: 10.1007/s00411-014-0569-y. Epub 2014 Sep 24.
10
Endonuclease III is an iron-sulfur protein.
Biochemistry. 1989 May 16;28(10):4450-5. doi: 10.1021/bi00436a049.

引用本文的文献

1
High Affinity Aptamers and Their Specificity for Azaspiracid-2 Using Capture-SELEX.
Mar Drugs. 2025 Apr 25;23(5):183. doi: 10.3390/md23050183.
2
Modification of the 4Fe-4S Cluster Charge Transport Pathway Alters RNA Synthesis by Yeast DNA Primase.
Biochemistry. 2022 Jun 7;61(11):1113-1123. doi: 10.1021/acs.biochem.2c00100. Epub 2022 May 26.
3
The [4Fe4S] Cluster of Yeast DNA Polymerase ε Is Redox Active and Can Undergo DNA-Mediated Signaling.
J Am Chem Soc. 2021 Oct 6;143(39):16147-16153. doi: 10.1021/jacs.1c07150. Epub 2021 Sep 24.
4
UvrC Coordinates an O-Sensitive [4Fe4S] Cofactor.
J Am Chem Soc. 2020 Jun 24;142(25):10964-10977. doi: 10.1021/jacs.0c01671. Epub 2020 Jun 12.
6
Redox Chemistry in the Genome: Emergence of the [4Fe4S] Cofactor in Repair and Replication.
Annu Rev Biochem. 2019 Jun 20;88:163-190. doi: 10.1146/annurev-biochem-013118-110644.
7
Substrate Binding Regulates Redox Signaling in Human DNA Primase.
J Am Chem Soc. 2018 Dec 12;140(49):17153-17162. doi: 10.1021/jacs.8b09914. Epub 2018 Nov 29.
8
Nitric Oxide Modulates Endonuclease III Redox Activity by a 800 mV Negative Shift upon [FeS] Cluster Nitrosylation.
J Am Chem Soc. 2018 Sep 19;140(37):11800-11810. doi: 10.1021/jacs.8b07362. Epub 2018 Sep 6.
9
A human MUTYH variant linking colonic polyposis to redox degradation of the [4Fe4S] cluster.
Nat Chem. 2018 Aug;10(8):873-880. doi: 10.1038/s41557-018-0068-x. Epub 2018 Jun 18.
10
Sensing DNA through DNA Charge Transport.
ACS Chem Biol. 2018 Jul 20;13(7):1799-1809. doi: 10.1021/acschembio.8b00347. Epub 2018 Jun 1.

本文引用的文献

1
Long-Range Electron Transfer through DNA Films.
Angew Chem Int Ed Engl. 1999 Apr 1;38(7):941-945. doi: 10.1002/(SICI)1521-3773(19990401)38:7<941::AID-ANIE941>3.0.CO;2-7.
2
An ultrasensitive universal detector based on neutralizer displacement.
Nat Chem. 2012 Jun 3;4(8):642-8. doi: 10.1038/nchem.1367.
3
DNA sensing by electrocatalysis with hemoglobin.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11528-33. doi: 10.1073/pnas.1201551109. Epub 2012 Jun 25.
4
DNA electrochemistry with tethered methylene blue.
Langmuir. 2012 May 1;28(17):7063-70. doi: 10.1021/la300566x. Epub 2012 Apr 18.
6
Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor.
J Am Chem Soc. 2012 Feb 22;134(7):3346-8. doi: 10.1021/ja2115663. Epub 2012 Feb 10.
7
DNA charge transport as a first step in coordinating the detection of lesions by repair proteins.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1856-61. doi: 10.1073/pnas.1120063109. Epub 2012 Jan 23.
8
DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster.
Nucleic Acids Res. 2012 May;40(10):4247-60. doi: 10.1093/nar/gks039. Epub 2012 Jan 28.
9
Iron-sulphur clusters in nucleic acid processing enzymes.
Curr Opin Struct Biol. 2012 Feb;22(1):94-100. doi: 10.1016/j.sbi.2011.11.004. Epub 2011 Dec 12.
10
Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies.
Anal Chem. 2012 Jan 17;84(2):1098-103. doi: 10.1021/ac202757c. Epub 2012 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验