Cherney Melisa M, Junior Carolyn C, Bergquist Bryan B, Bowler Bruce E
Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, USA.
J Am Chem Soc. 2013 Aug 28;135(34):12772-82. doi: 10.1021/ja405725f. Epub 2013 Aug 15.
Alkaline conformers of cytochrome c may be involved in both its electron transport and apoptotic functions. We use cobalt(II)bis(terpyridine), Co(terpy)2(2+), as a reagent for conformationally gated electron-transfer (gated ET) experiments to study the alkaline conformational transition of K79H variants of yeast iso-1-cytochrome c expressed in Escherichia coli , WTK79H, with alanine at position 72 and Saccharomyces cerevisiae , yK79H, with trimethyllysine (Tml) at position 72. Co(terpy)2(2+) is well-suited to the 100 ms to 1 s time scale of the His79-mediated alkaline conformational transition of these variants. Reduction of the His79-heme alkaline conformer by Co(terpy)2(2+) occurs primarily by gated ET, which involves conversion to the native state followed by reduction, with a small fraction of the His79-heme alkaline conformer directly reduced by Co(terpy)2(2+). The gated ET experiments show that the mechanism of formation of the His79-heme alkaline conformer involves only two ionizable groups. In previous work, we showed that the mechanism of the His73-mediated alkaline conformational transition requires three ionizable groups. Thus, the mechanism of heme crevice opening depends upon the position of the ligand mediating the process. The microscopic rate constants provided by gated ET studies show that mutation of Tml72 (yK79H variant) in the heme crevice loop to Ala72 (WTK79H variant) affects the dynamics of heme crevice opening through a small destabilization of both the native conformer and the transition state relative to the His79-heme alkaline conformer. Previous pH jump data had indicated that the Tml72→Ala mutation primarily stabilized the transition state for the His79-mediated alkaline conformational transition.
细胞色素c的碱性构象异构体可能涉及其电子传递和凋亡功能。我们使用双(三联吡啶)钴(II),Co(terpy)2(2+),作为用于构象门控电子转移(门控ET)实验的试剂,以研究在大肠杆菌中表达的酵母同工酶-1-细胞色素c的K79H变体、72位为丙氨酸的WTK79H以及72位为三甲基赖氨酸(Tml)的酿酒酵母yK79H的碱性构象转变。Co(terpy)2(2+)非常适合这些变体由His79介导的碱性构象转变的100毫秒至1秒的时间尺度。Co(terpy)2(2+)对His79-血红素碱性构象异构体的还原主要通过门控ET发生,这涉及先转化为天然状态然后再还原,一小部分His79-血红素碱性构象异构体直接被Co(terpy)2(2+)还原。门控ET实验表明,His79-血红素碱性构象异构体的形成机制仅涉及两个可电离基团。在先前的工作中,我们表明His73介导的碱性构象转变机制需要三个可电离基团。因此,血红素裂隙打开的机制取决于介导该过程的配体的位置。门控ET研究提供的微观速率常数表明,血红素裂隙环中Tml72(yK79H变体)突变为Ala72(WTK79H变体)通过相对于His79-血红素碱性构象异构体使天然构象异构体和过渡态都略微不稳定,从而影响血红素裂隙打开的动力学。先前的pH跃变数据表明,Tml72→Ala突变主要稳定了His79介导的碱性构象转变的过渡态。