Suppr超能文献

外周生物钟振荡器:时间和食物。

Peripheral circadian oscillators: time and food.

机构信息

Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, Mexico.

出版信息

Prog Mol Biol Transl Sci. 2013;119:83-103. doi: 10.1016/B978-0-12-396971-2.00004-X.

Abstract

The suprachiasmatic nucleus (SCN) provides timing to the brain and to the whole organism. Its rhythmic signal to mainly hypothalamic structures results in a synchronized hormonal and autonomic output to the body that coordinates behavior and physiology. As a result of this, the expression of clock genes in all organs has a rhythm that is dictated by the SCN. Together with these clock genes, a number of cellular processes follow a similar rhythm, whereby it has been proposed that these events are driven at least, in part, by clock genes. Together, this forms a multiple oscillating system that interacts and under normal conditions is synchronized by the SCN. The autonomic and hormonal outputs from the SCN are examples of messages that are clearly targeted; the behaviors driven by the SCN are examples of messages that may have more diffuse targets. For example, food intake and locomotor activity, which are normally driven by the SCN, have the capacity to drive the rhythm of clock genes in cells of the liver. The influence of food has been shown by offering food outside the normal activity-food intake period. If such a condition persists, desynchronization follows between centrally and peripherally dictated rhythms because the SCN keeps transmitting temporal signals according to the day-night cycle. These circumstances promote pathologies such as the metabolic syndrome, which is characterized by the progressive onset of hypertension, insulin resistance, and diabetes. As clock genes are proposed to drive the rhythms of metabolic genes, it is very attractive to give the clock genes a central place in this desynchronization and pathology picture. Therefore, in this chapter, we pay special attention to the question of how the SCN is able to transmit its message to the cells of the body and focus on the liver, because of its essential role in metabolism. Here, we review recent evidence that shows how desynchronization may lead to the uncoupling of cellular processes within the liver cells. The basis for this cellular dissociation, we argue, is the fact that the network of brain-body interaction is desynchronized, leading also to an uncoupling of normally coupled systems within the cell.

摘要

视交叉上核(SCN)为大脑和整个生物体提供时间信号。它的节律信号主要传递到下丘脑结构,导致身体的激素和自主输出同步,协调行为和生理。因此,所有器官中的时钟基因的表达都具有由 SCN 决定的节律。随着这些时钟基因,许多细胞过程遵循相似的节律,据推测,这些事件至少部分是由时钟基因驱动的。这些事件一起形成了一个多振荡系统,相互作用并在正常情况下由 SCN 同步。SCN 的自主和激素输出是明确靶向的消息的例子;SCN 驱动的行为是可能具有更弥散目标的消息的例子。例如,通常由 SCN 驱动的食物摄入和运动活动具有驱动肝脏细胞中时钟基因节律的能力。通过在正常活动-食物摄入期间之外提供食物,已经显示出食物的影响。如果这种情况持续存在,中枢和外周指令性节律之间会出现失步,因为 SCN 根据昼夜节律继续传递时间信号。这些情况会促进代谢综合征等病理状况的发生,其特征是高血压、胰岛素抵抗和糖尿病的逐渐发作。由于时钟基因被认为可以驱动代谢基因的节律,因此将时钟基因置于这种失步和病理状态的核心位置是非常有吸引力的。因此,在本章中,我们特别关注 SCN 如何将其信息传递给身体的细胞的问题,并特别关注肝脏,因为肝脏在代谢中起着至关重要的作用。在这里,我们回顾了最近的证据,这些证据表明失步如何导致肝脏细胞内的细胞过程解耦。我们认为,这种细胞分离的基础是大脑-身体相互作用的网络失步,导致细胞内正常耦合系统的解耦。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验