Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan.
J Phys Condens Matter. 2013 Sep 4;25(35):355007. doi: 10.1088/0953-8984/25/35/355007. Epub 2013 Jul 31.
We report the real-time observation of the stress change during sub-nanometer oxide growth on the Si(100) surface. Oxidation initially induced a rapid buildup of tensile stress up to -1.9 × 10(8) N m(-2) with an oxide thickness of 0.25 nm, followed by gradual compensation by a compressive stress. The compressive stress saturated at 5 × 10(7) N m(-2) for an oxide thickness of 1.2 nm. The analysis, assisted by theoretical study, indicates that the observed initial tensile stress is caused by oxygen bridge-bonding between the Si dimers. Atomistic model calculations considering mutually orthogonal orientations of the Si(100) surface structure reproduce the stress inversion from the tensile to the compressive side.
我们报告了在 Si(100)表面上生长亚纳米氧化物过程中应力变化的实时观察。氧化过程最初导致拉伸应力迅速增加,达到-1.9×10(8) N m(-2),氧化层厚度为 0.25nm,随后逐渐被压缩应力补偿。当氧化层厚度达到 1.2nm 时,压缩应力达到 5×10(7) N m(-2)并饱和。理论研究的辅助分析表明,观察到的初始拉伸应力是由 Si 二聚体之间的氧桥键合引起的。考虑 Si(100)表面结构相互正交取向的原子模型计算再现了从拉伸到压缩侧的应力反转。