Department of Materials and Interfaces, Faculty of Chemistry and The Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15195-200. doi: 10.1073/pnas.1306426110. Epub 2013 Jul 31.
The ability to assemble discrete nanowires (NWs) with nanoscale precision on a substrate is the key to their integration into circuits and other functional systems. We demonstrate a bottom-up approach for massively parallel deterministic assembly of discrete NWs based on surface-guided horizontal growth from nanopatterned catalyst. The guided growth and the catalyst nanopattern define the direction and length, and the position of each NW, respectively, both with unprecedented precision and yield, without the need for postgrowth assembly. We used these highly ordered NW arrays for the parallel production of hundreds of independently addressable single-NW field-effect transistors, showing up to 85% yield of working devices. Furthermore, we applied this approach for the integration of 14 discrete NWs into an electronic circuit operating as a three-bit address decoder. These results demonstrate the feasibility of massively parallel "self-integration" of NWs into electronic circuits and functional systems based on guided growth.
在基板上将离散纳米线(NWs)以纳米级精度组装在一起的能力是将其集成到电路和其他功能系统中的关键。我们展示了一种基于表面引导的从纳米图案化催化剂进行水平生长的自下而上的方法,用于大规模平行确定性组装离散 NW。引导生长和催化剂纳米图案分别定义了每个 NW 的方向和长度以及位置,其精度和产量均前所未有,而无需进行后续组装。我们使用这些高度有序的 NW 阵列来并行生产数百个可独立寻址的单 NW 场效应晶体管,显示出高达 85%的工作器件的产量。此外,我们将此方法应用于将 14 个离散 NW 集成到一个作为三比特地址解码器的电子电路中。这些结果证明了基于引导生长的 NW 大规模平行“自集成”到电子电路和功能系统中的可行性。