Rothman Amnon, Bukvišová Kristýna, Itzhak Noya Ruth, Kaplan-Ashiri Ifat, Kossoy Anna Eden, Sui Xiaomeng, Novák Libor, Šikola Tomáš, Kolíbal Miroslav, Joselevich Ernesto
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel.
Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69Brno, Czech Republic.
ACS Nano. 2022 Nov 22;16(11):18757-18766. doi: 10.1021/acsnano.2c07480. Epub 2022 Oct 28.
Surface-guided growth has proven to be an efficient approach for the production of nanowire arrays with controlled orientations and their large-scale integration into electronic and optoelectronic devices. Much has been learned about the different mechanisms of guided nanowire growth by epitaxy, graphoepitaxy, and artificial epitaxy. A model describing the kinetics of surface-guided nanowire growth has been recently reported. Yet, many aspects of the surface-guided growth process remain unclear due to a lack of its observation in real time. Here we observe how surface-guided nanowires grow in real time by scanning electron microscopy (SEM). Movies of ZnSe surface-guided nanowires growing on periodically faceted substrates of annealed M-plane sapphire clearly show how the nanowires elongate along the substrate nanogrooves while pushing the catalytic Au nanodroplet forward at the tip of the nanowire. The movies reveal the timing between competing processes, such as planar vs nonplanar growth, catalyst-selective vapor-liquid-solid elongation vs nonselective vapor-solid thickening, and the effect of topographic discontinuities of the substrate on the growth direction, leading to the formation of kinks and loops. Contrary to some observations for nonplanar nanowire growth, planar nanowires are shown to elongate at a constant rate and not by jumps. A decrease in precursor concentration as it is consumed after long reaction time causes the nanowires to shrink back instead of growing, thus indicating that the process is reversible and takes place near equilibrium. This real-time study of surface-guided growth, enabled by SEM, enables a better understanding of the formation of nanostructures on surfaces.
表面引导生长已被证明是一种高效的方法,可用于生产具有可控取向的纳米线阵列,并将其大规模集成到电子和光电器件中。关于外延、图形外延和人工外延引导纳米线生长的不同机制,人们已经了解了很多。最近报道了一个描述表面引导纳米线生长动力学的模型。然而,由于缺乏对表面引导生长过程的实时观察,该过程的许多方面仍不清楚。在这里,我们通过扫描电子显微镜(SEM)实时观察表面引导纳米线的生长情况。在退火的M面蓝宝石的周期性刻面衬底上生长的ZnSe表面引导纳米线的视频清楚地显示了纳米线如何沿着衬底纳米凹槽伸长,同时将催化金纳米液滴向前推到纳米线的尖端。这些视频揭示了竞争过程之间的时间关系,例如平面生长与非平面生长、催化剂选择性气-液-固伸长与非选择性气-固增厚,以及衬底地形不连续性对生长方向的影响,从而导致扭结和环的形成。与一些非平面纳米线生长的观察结果相反,平面纳米线以恒定速率伸长而不是跳跃式伸长。长时间反应后,前驱体浓度随着消耗而降低,导致纳米线收缩而不是生长,这表明该过程是可逆的,并且在接近平衡的状态下发生。通过SEM实现的对表面引导生长的实时研究,有助于更好地理解表面纳米结构的形成。