Suppr超能文献

人眼角膜中胶原原纤维晶格的自组织机制。

Mechanisms of self-organization for the collagen fibril lattice in the human cornea.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

出版信息

J R Soc Interface. 2013 Jul 31;10(87):20130512. doi: 10.1098/rsif.2013.0512. Print 2013 Oct 6.

Abstract

The transparency of the human cornea depends on the regular lattice arrangement of the collagen fibrils and on the maintenance of an optimal hydration--the achievement of both depends on the presence of stromal proteoglycans (PGs) and their linear sidechains of negatively charged glycosaminoglycans (GAGs). Although the GAGs produce osmotic pressure by the Donnan effect, the means by which they exert positional control of the lattice is less clear. In this study, a theoretical model based on equilibrium thermodynamics is used to describe restoring force mechanisms that may control and maintain the fibril lattice and underlie corneal transparency. Electrostatic-based restoring forces that result from local charge density changes induced by fibril motion, and entropic elastic restoring forces that arise from duplexed GAG structures that bridge neighbouring fibrils, are described. The model allows for the possibility that fibrils have a GAG-dense coating that adds an additional fibril force mechanism preventing fibril aggregation. Swelling pressure predictions are used to validate the model with results showing excellent agreement with experimental data over a range of hydration from 30 to 200% of normal. The model suggests that the electrostatic restoring force is dominant, with the entropic forces from GAG duplexes being an order or more smaller. The effect of a random GAG organization, as observed in recent imaging, is considered in a dynamic model of the lattice that incorporates randomness in both the spatial distribution of GAG charge and the topology of the GAG duplexes. A striking result is that the electrostatic restoring forces alone are able to reproduce the image-based lattice distribution function for the human cornea, and thus dynamically maintain the short-range order of the lattice.

摘要

人眼角膜的透明度取决于胶原纤维的规则晶格排列和维持最佳水合状态——这两个方面的实现都依赖于基质蛋白聚糖 (PGs) 及其线性侧链的负电荷糖胺聚糖 (GAGs)。尽管 GAGs 通过唐南效应产生渗透压力,但它们发挥晶格位置控制作用的方式尚不清楚。在这项研究中,使用基于平衡热力学的理论模型来描述可能控制和维持纤维晶格并构成角膜透明度基础的恢复力机制。描述了由纤维运动引起的局部电荷密度变化引起的基于静电的恢复力,以及由桥接相邻纤维的双 GAG 结构产生的熵弹性恢复力。该模型允许纤维具有 GAG 密集涂层的可能性,这增加了一种防止纤维聚集的额外纤维力机制。通过将预测的肿胀压力与实验数据进行比较来验证模型,结果显示在正常水合度的 30%至 200%范围内,模型与实验数据具有极好的一致性。该模型表明,静电恢复力占主导地位,GAG 双链的熵力小一个或多个数量级。考虑到最近成像中观察到的随机 GAG 组织的影响,在包含 GAG 电荷空间分布和 GAG 双链拓扑随机性的晶格动态模型中对其进行了考虑。一个显著的结果是,仅静电恢复力就能够再现基于图像的人眼角膜晶格分布函数,从而动态维持晶格的短程有序。

相似文献

1
Mechanisms of self-organization for the collagen fibril lattice in the human cornea.
J R Soc Interface. 2013 Jul 31;10(87):20130512. doi: 10.1098/rsif.2013.0512. Print 2013 Oct 6.
2
Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
J Biomech. 2013 Feb 22;46(4):813-8. doi: 10.1016/j.jbiomech.2012.11.017. Epub 2012 Dec 6.
6
Surface topology of collagen fibrils associated with proteoglycans in mouse cornea and sclera.
Jpn J Ophthalmol. 2000 Nov-Dec;44(6):591-5. doi: 10.1016/s0021-5155(00)00272-0.
7
Corneal and scleral collagens--a microscopist's perspective.
Micron. 2001 Apr;32(3):261-72. doi: 10.1016/s0968-4328(00)00041-x.
8
Ultrastructure features of camel cornea--collagen fibril and proteoglycans.
Vet Ophthalmol. 2012 Jan;15(1):36-41. doi: 10.1111/j.1463-5224.2011.00918.x. Epub 2011 Jul 12.
9
The role of KS GAGs in the microstructure of CXL-treated corneal stroma; a transmission electron microscopy study.
Exp Eye Res. 2023 Jun;231:109476. doi: 10.1016/j.exer.2023.109476. Epub 2023 Apr 15.
10
Electrostatic, elastic and hydration-dependent interactions in dermis influencing volume exclusion and macromolecular transport.
J Theor Biol. 2016 Jul 7;400:80-91. doi: 10.1016/j.jtbi.2016.03.044. Epub 2016 Apr 11.

引用本文的文献

1
The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review.
Bioengineering (Basel). 2025 Jan 8;12(1):45. doi: 10.3390/bioengineering12010045.
3
Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens.
J Biol Chem. 2022 Nov;298(11):102537. doi: 10.1016/j.jbc.2022.102537. Epub 2022 Sep 27.
7
Differential Gene Transcription of Extracellular Matrix Components in Response to In Vivo Corneal Crosslinking (CXL) in Rabbit Corneas.
Transl Vis Sci Technol. 2017 Dec 12;6(6):8. doi: 10.1167/tvst.6.6.8. eCollection 2017 Dec.
8
The structural response of the cornea to changes in stromal hydration.
J R Soc Interface. 2017 Jun;14(131). doi: 10.1098/rsif.2017.0062.
9
Role of corneal collagen fibrils in corneal disorders and related pathological conditions.
Int J Ophthalmol. 2017 May 18;10(5):803-811. doi: 10.18240/ijo.2017.05.24. eCollection 2017.
10
Establishment of an in vitro monolayer model of macular corneal dystrophy.
Lab Invest. 2016 Dec;96(12):1311-1326. doi: 10.1038/labinvest.2016.102. Epub 2016 Oct 17.

本文引用的文献

1
The architecture of the cornea and structural basis of its transparency.
Adv Protein Chem Struct Biol. 2009;78:25-49. doi: 10.1016/S1876-1623(08)78002-7. Epub 2009 Nov 27.
2
Proteomic analysis of potential keratan sulfate, chondroitin sulfate A, and hyaluronic acid molecular interactions.
Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4500-15. doi: 10.1167/iovs.09-4914. Epub 2010 Apr 7.
4
Theory of transparency of the eye.
Appl Opt. 1971 Mar 1;10(3):459-73. doi: 10.1364/AO.10.000459.
5
Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon.
Matrix Biol. 2009 Oct;28(8):503-10. doi: 10.1016/j.matbio.2009.08.002. Epub 2009 Aug 19.
6
Comparison of structure and transport properties of concentrated hard and soft sphere fluids.
J Chem Phys. 2009 May 7;130(17):174903. doi: 10.1063/1.3124182.
7
Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase.
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13333-8. doi: 10.1073/pnas.0605441103. Epub 2006 Aug 25.
8
A coarse-grained molecular model for glycosaminoglycans: application to chondroitin, chondroitin sulfate, and hyaluronic acid.
Biophys J. 2005 Jun;88(6):3870-87. doi: 10.1529/biophysj.104.058800. Epub 2005 Apr 1.
10
A new method for the determination of the swelling pressure of the corneal stroma in vitro.
Exp Eye Res. 1963 Apr;2:122-9. doi: 10.1016/s0014-4835(63)80003-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验