Department of Chemistry, Tsinghua University , Beijing 100084, PR China.
Inorg Chem. 2013 Aug 19;52(16):9449-55. doi: 10.1021/ic401068n. Epub 2013 Aug 1.
We report the synthesis of a novel hierarchical MnO2/SnO2 heterostructures via a hydrothermal method. Secondary SnO2 nanostructure grows epitaxially on the surface of MnO2 backbones without any surfactant, which relies on the minimization of surface energy and interfacial lattice mismatch. Detailed investigations reveal that the cover density and morphology of the SnO2 nanostructure can be tailored by changing the experimental parameter. Moreover, we demonstrate a bottom-up method to produce energetic nanocomposites by assembling nanoaluminum (n-Al) and MnO2/SnO2 hierarchical nanostructures into a free-standing MnO2/SnO2/n-Al ternary thermite membrane. This assembled approach can significantly reduce diffusion distances and increase their intimacy between the components. Different thermite mixtures were investigated to evaluate the corresponding activation energies using DSC techniques. The energy performance of the ternary thermite membrane can be manipulated through different components of the MnO2/SnO2 heterostructures. Overall, our work may open a new route for new energetic materials.
我们通过水热法合成了一种新型的 MnO2/SnO2 分级异质结构。在没有任何表面活性剂的情况下,二次 SnO2 纳米结构在 MnO2 骨架表面外延生长,这依赖于表面能和界面晶格失配的最小化。详细的研究表明,通过改变实验参数可以调整 SnO2 纳米结构的覆盖密度和形态。此外,我们通过将纳米铝(n-Al)和 MnO2/SnO2 分级纳米结构组装成独立的 MnO2/SnO2/n-Al 三元铝热膜,展示了一种自下而上的方法来制备高能纳米复合材料。这种组装方法可以显著减小扩散距离并增加各组分之间的紧密性。通过 DSC 技术研究了不同的铝热混合物,以评估相应的激活能。通过 MnO2/SnO2 异质结构的不同组件,可以控制三元铝热膜的能量性能。总的来说,我们的工作可能为新型高能材料开辟了新的途径。