Costilla-Esquivel A, Corona-Villavicencio F, Velasco-Castañón J G, Medina-DE LA Garza C E, Martínez-Villarreal R T, Cortes-Hernández D E, Ramírez-López L E, González-Farías G
Centro de Investigación en Matemáticas (CIMAT), Unidad Monterrey.
Universidad Autónoma de Nuevo León (UANL),Centro de Investigación y Desarrollo en Ciencias de la Salud.
Epidemiol Infect. 2014 Jul;142(7):1375-83. doi: 10.1017/S0950268813001854. Epub 2013 Aug 2.
Weekly data from 7 years (2004-2010) of primary-care counts of acute respiratory illnesses (ARIs) and local weather readings were used to adjust a multivariate time-series vector error correction model with covariates (VECMX). Weather variables were included through a partial least squares index that consisted of weekly minimum temperature (coefficient = - 0·26), weekly median of relative humidity (coefficient = 0·22) and weekly accumulated rainfall (coefficient = 0·5). The VECMX long-term test reported significance for trend (0·01, P = 0·00) and weather index (1·69, P = 0·00). Short-term relationship was influenced by seasonality. The model accounted for 76% of the variability in the series (adj. R 2 = 0·76), and the co-integration diagnostics confirmed its appropriateness. The procedure is easily reproducible by researchers in all climates, can be used to identify relevant weather fluctuations affecting the incidence of ARIs, and could help clarify the influence of contact rates on the spread of these diseases.
利用7年(2004 - 2010年)初级保健机构急性呼吸道疾病(ARI)计数的每周数据以及当地气象读数,对一个带有协变量的多元时间序列向量误差修正模型(VECMX)进行调整。天气变量通过一个偏最小二乘指数纳入模型,该指数由每周最低温度(系数 = -0·26)、每周相对湿度中位数(系数 = 0·22)和每周累计降雨量(系数 = 0·5)组成。VECMX长期检验报告显示趋势具有显著性(0·01,P = 0·00),天气指数也具有显著性(1·69,P = 0·00)。短期关系受季节性影响。该模型解释了该序列中76%的变异性(调整后R² = 0·76),协整诊断证实了其适用性。该程序在所有气候条件下的研究人员都易于重现,可用于识别影响ARI发病率的相关天气波动,并有助于阐明接触率对这些疾病传播的影响。