University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
Int J Pharm. 2013 Oct 15;455(1-2):338-47. doi: 10.1016/j.ijpharm.2013.06.083. Epub 2013 Jul 29.
This paper especially highlights the finding that the mechanical properties of polymeric nanofibers can be tuned by changing the fiber size as well as the composition. For this purpose, the bending Young's modulus was determined using atomic force microscope by involving single-material (polyvinyl alcohol (PVA), polyethylene oxide (PEO 400K)) and composite nanofibers (polyvinyl alcohol/hyaluronic acid (PVA/HA), polyethylene oxide/chitosan (PEO 400K/CS)). The mechanical property, namely the bending Young's modulus, increases as the diameter of the fibers decreases from the bulk down to the nanometer regime (less than 200 nm). The ranking of increasing stiffness according to the AFM measurements of the three-point beam bending test are in agreement, and can be ranked: PEO 400K<PVA/HA≈PVA<PEO<400K/CS. According to our results, CS-based nanofibers are the stiffest (15 GPa) and the most resilient to erosion in an aqueous medium. Consequently, they possess the most appropriate attributes for bone, tendon, and cartilage tissue scaffold engineering. Nanofibers based on PVA (6 GPa) and PEO (3 GPa) are more elastic (a smaller bending Young's modulus) and therefore are the most suitable for skin and wound tissue scaffolds.
本文特别强调了这样一个发现,即通过改变纤维尺寸以及组成,可以调整聚合物纳米纤维的力学性能。为此,通过原子力显微镜(AFM),使用单材料(聚乙烯醇(PVA)、聚氧化乙烯(PEO 400K))和复合纳米纤维(聚乙烯醇/透明质酸(PVA/HA)、聚氧化乙烯/壳聚糖(PEO 400K/CS))来确定弯曲杨氏模量。机械性能,即弯曲杨氏模量,随着纤维直径从体相减小到纳米级(小于 200nm)而增加。根据三点梁弯曲试验的 AFM 测量结果对刚度的排序是一致的,可以排序为:PEO 400K<PVA/HA≈PVA<PEO<400K/CS。根据我们的结果,基于 CS 的纳米纤维是最硬的(15GPa),并且在水介质中最能抵抗侵蚀。因此,它们具有最适合骨、腱和软骨组织支架工程的属性。基于 PVA(6GPa)和 PEO(3GPa)的纳米纤维具有更大的弹性(更小的弯曲杨氏模量),因此最适合用于皮肤和伤口组织支架。